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We discuss the entanglement properties of symmetric states of n qubits. The Majorana representation

maps a generic such state into a system of n points on a sphere. Entanglement invariants, either under local

unitaries (LU) or stochastic local operations and classical communication (SLOCC), can then be addressed

in terms of the relative positions of the Majorana points. In the LU case, an overcomplete set of invariants

can be built from the inner product of the radial vectors pointing to these points; this is detailed for the

well-documented three-qubits case. In the SLOCC case, a cross ratio of related Möbius transformations

are shown to play a central role, exemplified here for four qubits. Finally, as a side result, we also analyze

the manifold of maximally entangled 3 qubit state, both in the symmetric and generic case.
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The potential power of quantum information, either for
cryptography and computation purposes, is largely based
on the subtle concept of quantum entanglement [1]. In a
system composed of n two-level entities (qubits), a generic
state is entangled; i.e., it cannot be written as a separable
product of states belonging to each constitutive part. While
it is rather easy to characterize entanglement for a 2-qubit
system, the task of quantifying the amount of entangle-
ment carried by the total system is very difficult, for
increasing n.

Several entanglement measures have, nevertheless, been
proposed (see [2,3] for comprehensive reviews), and their
behavior under state transformation studied. Important
cases are given by those quantities which remain invariant
under (stochastic) local operations and classical commu-
nication, noted (S)LOCC [4,5]. Stated as operations per-
formed in the multiquibit Hilbert space H , the latter read
�iMi, called local unitaries (LU) for LOCC (with Mi a
unitary matrix), and invertible local operations (ILO) for
SLOCC (Mi a matrix with nonvanishing determinant).

One aims to find a complete set of such invariants that
parametrizes the orbit space H = �i Mi. Physically this
means that states can only be obtained from each other
with a local transformation (LU or ILO) if they share the
same set of invariants. In the LOCC case, LU invariants
can in principal be written as polynomial functions of the
state components [6–8]. However their number proliferates
with n, and finding explicit expressions becomes challeng-
ing; moreover their physical relevance is not necessarily
obvious. Upon enlarging the set of operations that can be
performed locally, like passing from LU to ILO, the num-
ber of entanglement classes can generally be reduced.

In this Letter we consider symmetric n-qubit states, and
analyze their entanglement properties under LOCC and

SLOCC. Such states have been the subject of several recent
studies [9–16], with even some experimental [17] realiza-
tions or proposals [18]. In that case most of the relevant
bipartite entanglement criteria were shown to coincide [19]
and generic entanglement measures usually simplify.
We use the Majorana representation [20], which charac-

terizes such a state as a collection of n points on a sphere,
and derive the entanglement invariants in terms of the
points arrangement. In the LOCC case, invariants can in-
deed be built from the inner product of the radial vectors
pointing to these points; we explicitly derive the well-
known 6 LU invariants for three qubits. In the SLOCC
case, we show how sets of cross-ratio invariants under ILO
related Möbius transformations play a central and clarify-
ing role, and relate to a recently proposed classification of
entanglement classes [21]. For four qubits, the most ge-
neric SLOCC invariant is simply related to the Klein
modular invariant [22]. Finally, and as a side result, we
also precise the manifold of maximally entangled 3 qubits
Greenberger-Horne-Zeilinger (GHZ)-like states, both in
the symmetric and the generic cases.
Majorana representation in the symmetric sector.—The

n-qubits Hilbert space decomposes into subspaces of con-
stant total spin S2 ¼ S:S (where S ¼ 1

2

P
n
i¼1 �i). The sub-

space of maximal spin, S2 ¼ sðsþ 1Þ with n ¼ 2s, which
appears once in this decomposition, corresponds to the
fully symmetric sector, spanned by the Dicke basis
(Szjs;mi ¼ mjs;mi). Using spin coherent states j�i ¼
e�Sþjs;m ¼ �si, where S� ¼ Sx � iSy, any symmetric

state j�i can be represented by its Majorana polynomial

�ð�Þ ¼ Xs
m¼�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2sÞ!

ðs�mÞ!ðsþmÞ!

s
hs;mj�i�mþs: (1)
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Up to a global unphysical factor, this state is therefore fully
characterized by the set f�ig, made of the n complex zeros
of�ð�Þ, suitably completed by points at infinity whenever
hs; sj�i vanishes: �ð�Þ / Q

2s
i¼1ð�� �iÞ. A nice geomet-

rical representation of j�i, by n points on the unit sphere,
is obtained by an inverse stereographic map of f�ig ! fvig.
The Majorana high spin spherical representation general-
izes (although published earlier) the spin 1=2 Bloch
sphere; it recently proved quite useful in the context of
collective spin models [23].

Symmetric LU Invariants (SLUI).—A generic local
(separable) unitary transformation acting on a set of n
qubits can be written, up to a unphysical phase, in the

form U ¼ �ie
ði=2Þhi��i , with a collection of vectors

hi¼1;...;n 2 R3. In the symmetric sector, we restrict to iden-

tical hi, leading to the simpler form Us ¼ eih�S. This
implies that, in the symmetric sector, the only states that
are LU equivalent correspond to sets of (unordered)
Majorana zeros which can be transformed into each other
by a global rotation of their representative vectors
vi ! ~vi ¼ R � vi, with R in SOð3Þ. Moreover, one also
expects equivalent entanglement measures for states
that are related by an (antiunitary) time reversal
operation T ¼ �n

j¼1ði�yÞK, where K is the complex

conjugate operator in the computational basis
KðPijk¼0;1ti;j;kji; j; kiÞ ¼ ðPijk¼0;1 �ti;j;kji; j; kiÞ and T2 ¼
ð�1Þn. Geometrically, this corresponds to an inversion
vi ! ~vi ¼ �vi.

An overcomplete set of SLUI is obtained from symme-
trized products of the innerproducts vij ¼ vi � vj, as, for
instance, with the ck coefficients of x

k in the symmetrized
product

Q
ijðx� vijÞ ¼

P
ckx

k. It is instructive to relate

them to the standard invariants for two and three qubits. We
make use of density matrices � ¼ j�ih�j and eventually
use their partial trace, with indices in � indicating those
parts which have not been traced out.

The two-qubits case.—For 2 qubits, there is one entan-
glement invariant (if we disregard the trivial invariant
Tr½�� ¼ 1 for a normed state), which we express here
with the single inner product v12. It can be given as the
(equal) radius ri of the partial Bloch sphere when tracing
out one of the 2 subsystems. From r2i ¼ 2Tr½�2

i � � 1, one

gets ri ¼ 8ðv12þ1Þ
ðv12þ3Þ2 . Another most used form is the concur-

rence [24] running from zero for a separable state to unity
for a maximally entangled EPR state. In the symmetric
sector, it reads C ¼ 4

v12þ3 � 1. Separable symmetric states

correspond to the case with the two identical Majorana
points, while symmetric EPR corresponds to pairs of anti-
podal points (v12 ¼ �1). The latter set is then given by the
sphere S2 with opposite points identified, the projective
plane RP2. Note that a simple but careful analysis,
not reproduced here, allows us to extend the EPR case
to the full Hilbert space (not only to the symmetric sec-
tor), and recover the well-known RP3½� SOð3Þ� EPR
manifold [25].

The three-qubits case.—A complete set of six indepen-
dent LU invariant polynomials is known [26,27]. For a
generic 3-qubit state, Ii¼2;3;4 ¼ 2Tr½�2

i�1� � 1, I5 ¼
Tr½3ð�1 � �2Þ � �12� � Tr½�3

1� � Tr½�3
2�, I6 ¼ �3. Again,

I1 ¼ Tr½�� ¼ 1 for a normed state. I2;3;4 are related to

the radius of the (partial) Bloch balls of qubits (1, 2, 3),
respectively, once the other two are traced out. I5 is the
Kempe invariant [26] and I6 the 3-tangle, which takes the
form of a hyperdeterminant [27]. Note that I1;:::;6 are also

invariant under a time reversal transformation. Restricted
to the symmetric sector, these invariants explicitly read,
with c0 ¼ �v12v13v23, c1 ¼ v12v13 þ v12v23þv13v23,
and c2 ¼ �ðv12 þ v13 þ v23Þ:

I2;3;4 ¼ �6c0 þ 18c1 þ ðc2 � 60Þc2 þ 75

9ðc2 � 3Þ2 ;

I5 ¼ 1

18ðc2 � 3Þ3 ½�9c0ðc2 � 9Þ � 459

þ 27c1ðc2 � 5Þ þ ðc2 � 24Þc2ð4c2 � 21Þ�;

I6 ¼ 2ðc0 þ c1 þ c2 þ 1Þ
3ðc2 � 3Þ2 :

(2)

Using �i;j ¼ arccosvi;j as coordinate axes, and recalling

that the set of Majorana points is not ordered, we can
display the symmetric sector entanglement types inside
the tetrahedron (OABC) shown in Fig. 1. Analyzing the
subgroups of SOð3Þ that leave each representative state
invariant one can characterize the manifold corresponding
to each entanglement family (see Table I).
Toward a determination of the unit 3-tangle manifold.—

Symmetric GHZ states (with unit 3-tangle I6 ¼ 1) corre-
spond to the three Majorana points forming an equilateral
triangle on an equatorial plane. The set of equatorial planes
is the projective plane RP2. Adding the triangles global
rotation modulo 2�=3, the set of symmetric unit 3-tangle
states inherits the geometry SOð3Þ=Z3.
Using the above defined time reversal operator T,

we consider the operator Yð�Þ ¼ ðcos�þ sin�TÞ, whose

A

O

B
C

0

1,2

0
2,3

0

3,1

A

B C

O

FIG. 1 (color online). Entanglement types, for symmetric 3-
qubits. Point O corresponds to separable states (with coinciding
3 Majorana points), B and A to W and GHZ states, respectively.
States corresponding to point C can be brought to the form
1ffiffi
2

p ðjs ¼ 3
2 ; m ¼ � 1

2i þ js ¼ 3
2 ; m ¼ 1

2iÞ by a suitable LU.
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inverse is Yð��Þ (since T2 ¼ �1 for n odd); Yð�Þ is left
unchanged under conjugation with a LU. Applying Yð�Þ
onto a separable 3-qubit state, one gets interesting en-
tangled states. Starting from a symmetric separable state,
one proves that any symmetric GHZ state can be obtained
as j�i ¼ Yð�4Þjuijuijui. More generically, Yð�4Þ maps a

nonsymmetric separable state ju1iju2iju3i onto a (nonsym-
metric) GHZ state, as can be verified by a direct check.
One can show that these GHZ states form the manifold
M ¼ S2 � S2 � SOð3Þ=Z3. In the case (yet unproved, but
numerically plausible) that any generic unit 3-tangle GHZ
can be sent to the symmetric space by a LU, this would
prove that the full GHZ manifold is indeed M. Note M
differs by a factor Z3 from that given in [28].

Symmetric states SLOCC invariants.—A nice descrip-
tion of SLOCC invariant families was recently proposed
for symmetric n-qubits states [21,29], which focuses on the
number of different roots �i and their degeneracy. This
allows a full classification for n ¼ 2 or 3 but, as stressed by
the authors, leaves continuous families of additional pa-
rameters for larger n. Our aim here is to provide a closer
look to this question, by mapping this problem to the
classification of invariants of Möbius transformations.
Indeed, an ILO A that leaves the symmetric sector inva-
riant can also be parametrized as Us, but now with h
being complex instead of real. Upon simple manipula-

tions, one parametrizes this transformation as A ¼
eihðð1=�1þ�2ÞSþþSz�ð�1�2=�1þ�2ÞS�Þ, where �1, �2, h 2 C.
The action of this operator on a generic state in the coher-
ent state basis is given by [30]

A�ð�Þ ¼
�
��1ð�� �1Þ � �ð�� �2Þ

ð�1 � �2Þ
�
2s

��

�
��1�2ð�� �1Þ � ��1ð�� �2Þ

��1ð�� �1Þ � �ð�� �2Þ
�
; (3)

where � ¼ eiðh=2Þ½ð�1��2Þ=ð�1þ�2Þ�. Note that this transfor-
mation lets the wave function invariant for � ¼ �1 and
� ¼ �2. The roots �i of the polynomial �ð�Þ transform
according to the following Möbius transformation (MT):

�i ! �0
i ¼

ð�2�� �1�
�1Þ�i þ �1�2ð��1 � �Þ

ð�� ��1Þ�i þ ��1�2 � ��1

: (4)

Unitary transformations are recovered whenever �1 ¼
� ���1

2 and h 2 R, corresponding to the subclass of elliptic
MT. This mapping from ILO to MT is particularly interest-
ing when looking to invariant quantities. Indeed, the latter
are well known to preserve the ‘‘cross-ratio’’ of four (here
complex) numbers:

ð�i; �j;�k; �lÞ ¼
ð�i � �kÞð�j � �lÞ
ð�j � �kÞð�i � �lÞ ; (5)

which therefore form the natural building blocks for
SLOCC invariants. Note that permuting the roots � in
the cross ratio ð�i; �j;�k; �lÞ ¼ 	 leads generically to

the following six different values for the cross ratio
out of the 24 permutations: f	; 1	 ; 1� 	; 1

1�	 ;
	

	�1 ;
	�1
	 g,

belonging to distinct regions in the complex plane
(Fig. 2).
As discussed in [21], for n qubits, the symmetric

SLOCC classes are parametrized by n� 3 continuous
parameters. In terms of MT, this is nothing but the known
property that a unique MT relate two sets of three distinct
complex numbers, and that transformations involving n
complex numbers are parametrized by n� 3 cross ratios.
This immediately recovers the result that, for n ¼ 3, there
are 3 SLOCC classes in the symmetric sector, labeled by
the points O, B, and A in Fig. 1: separable states (point O),
with the three roots �i identical, W states (point B) with
two roots identical, and the remaining (generic) states that
can be mapped under SLOCC to the GHZ state (point A).
A complete set of SLOCC invariants (for any n) can be

obtained by choosing 3 roots �i (i ¼ 1, 2, 3) in order to

define the function 	ðzÞ ¼ ðz��1Þð�2��3Þ
ðz��3Þð�2��1Þ . The n� 3

complex values � ¼ f	1; . . . ; 	n�3g, where 	j�3 ¼ 	ð�jÞ

TABLE I. Manifold of the particular points O, A, B, and C of
Fig. 1.

States Manifold I2 I5 I6

O S2 1 1 0

A SOð3ÞZ3 0 1=4 1b

B S2 1=9 2=9a 0

C SOð3Þ 4=9 17=36 1=3

a2=9 is the minimum of I5 within the class of symmetric states
arising only for type B states.
bMaximal 3-tangle states.

2

1

0

1

2

1 3 46

555555

222222

2 1 0 1 2

Re

Im

FIG. 2 (color online). Symmetries of the cross product. For a
given set of four complex numbers, the 6 permutation related
cross ratios belong to separate regionsDI labeled here from 1 to
6. The boundaries of the regions carry more symmetries, so one
should, for example, only consider the black lines for regionD1.
States associated with invariant on the boundary set, like the
colored ones, are expected to display particular properties.
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for each �j>3, form the SLOCC invariants. Since the

ordering of the n roots is arbitrary, there are in general n!
such sets: under a permutation� the cross ratios transform
as � ! �0ð�Þ where each 	0

jð�Þ is a rational function of

the 	j’s.

For n ¼ 4, we noted the reduction to six independent
transformations; the requirement that 	 ¼ 	ð�4Þ 2 D1

fixes then a unique value of the SLOCC invariant.
In Ref. [21] a state having four different roots was
shown be SLOCC equivalent to a state within the one-

parameter family: j�ð
Þi ¼ jGHZ4i þ
jDð2Þ
4 i with 
 2

Cnf� 1ffiffi
3

p ; 1ffiffi
3

p g [where jGHZ4i¼ 1ffiffi
2

p ðjs¼2;m¼�2iþ
js¼2;m¼2iÞ and jDð2Þ

4 i ¼ js ¼ 2; m ¼ 0i]. Computing

the cross ratio for this family, one obtains the relation

	 ¼ 1
2 ð

ffiffiffi
3

p

þ 1Þ.

For n > 4, the set of permutation related cross ratios
leads to complex geometrical patterns and the identifica-
tion of a canonical domain analogous to D1 is difficult
(as an example for n ¼ 5 all 5! transformations lead to
inequivalent cross-ratio sets). We therefore introduce a
more symmetrical formulation of the invariant quantities,
Ikð�Þ ¼

P
�½	0

1ð�Þ�k, which amounts to sum the kth
powers of the transformed cross ratios (say of 	0

1) over
the complete orbit of the permutation group. Back to
n ¼ 4, a nontrivial symmetrized invariant I2ð	Þ is ob-

tained: I2ð	Þ¼ 2ð	6þ1Þ�6ð	5þ	Þþ9ð	4þ	2Þ�8	3

ð	�1Þ2	2 ¼�3þ 27
2 Jð	Þ,

where Jð	Þ is known as the Klein modular invariant [22].
The next case is n ¼ 5, where two independent invariants
I2ð	1; 	2Þ and I4ð	1; 	2Þ can be generated by summing the
cross ratios squares and fourth powers over the 120 permu-
tations. Because of a lack of space, the explicit form of the
two invariants is not given here. When two Majorana roots
are equal one can, without loss of generality, let 	1 go to
zero, in which case both invariants diverge, but we find
again the Klein invariant in the following expression

lim	1!0
I4ð	1;	2Þ
I2ð	1;	2Þ2 ¼ 1

8 � 2
27Jð	2Þ , which allows us to fully

characterize the states having 3 or 4 different roots.
In conclusion, we have explicitly constructed a set of

entanglement invariants under LOCC and SLOCC for
symmetric n-qubit states and given several examples for
n up to five. We also expect that this correspondence
between ILO andMöbius transformations, may find further
possible experimental consequences. Indeed, a generic
Möbius transform can be decomposed into elementary
operations, such as translations, rotations, inversions, and
dilation. It would therefore be very interesting to perform
such elementary operations by implementing suitable posi-
tive operator valued measures within the symmetric sector.

P. R. acknowledges support through FCT BPD Grant
No. SFRH/BPD/43400/2008. R.M. also acknowledges dis-
cussions with M. Kus and K. Zyczkowski about the unit
3-tangle manifold and with J-M Maillard, about SLOCC
invariants, who, in particular, noted the connection be-
tween Ið	Þ and the Klein invariant.

*ribeiro@cfif.ist.utl.pt
†remy.mosseri@upmc.fr

[1] M.A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge Univ. Press,
Cambridge, 2000).
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