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The conventional topological description given by the fundamental group of nematic order parameter

does not adequately explain the entangled defect line structures that have been observed in nematic

colloids. We introduce a new topological invariant, the self-linking number, that enables a complete

classification of entangled defect line structures in general nematics, even without particles, and

demonstrate our formalism using colloidal dimers, for which entangled structures have been previously

observed. We also unveil a simple rewiring scheme for the orthogonal crossing of two�1=2 disclinations,

based on a tetrahedral rotation of two relevant disclination segments, that allows us to predict possible

nematic braids and calculate their self-linking numbers.
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Depending on the temperature and their molecular prop-
erties, nematogenic media can form isotropic, nematic,
chiral, nematic, or even blue phases, each characterized
by a specific orientational ordering of the constituent
molecules. Their anisotropic nature allows the formation
of disclinations that can be stabilized by geometric or
intrinsic constraints. Recently, a lot of progress has been
made on the stabilization and manipulation of disclinations
by using dispersions of colloidal particles [1–4] or con-
finement to porous networks [5]. In nematic dispersions,
the anisotropic interparticle interactions mediated by elas-
tic deformations and defects lead to diverse colloidal
structures that promote self-assembly and offer great po-
tential for photonics and plasmonics [6]. Nematic braids
are disclination networks where defect loops are not local-
ized around one particle, but instead entangle clusters of
particles [7,8]. The existence of entangled structures was
first proposed based on the results of numerical simulations
[9,10]. They have since been observed experimentally and
their stability has been extensively analyzed [7,11]. These
structures are not sufficiently well described by the theory
developed for simple nematic defects [12] and a complete
theoretical understanding is still lacking. Nematic braids
may also include knots and links [13], otherwise seen in the
physics of polymers [14], DNA [15–17], and knotted light
[18]. Easy experimental observation of nematic disclina-
tion networks, and their rewiring, knotting, and linking by
laser tweezers [7,13], places nematic braids as a primary
template for the study of nontrivial topology in physical
systems.

Nematic braids stabilized by homeotropic particles con-
sist of closed �1=2 disclination loops. To fully describe a
single disclination loop, we generalize the mathematical
notion of a loop by introducing the self-linking number,
which counts how many times the cross section of the
disclination turns during a complete loop. This invariant
applies to elastic loops, DNA loops [17], and other fields,

but in the case of a �1=2 nematic disclination, due to its
intrinsic threefold symmetry, it assumes specific fractional
values, similar to flux discretization in the fractional quan-
tum Hall effect [19].
For the investigation of the self-linking number, we

chose a colloidal dimer consisting of two spherical parti-
cles with strong homeotropic anchoring, confined to a
homogeneous planar nematic cell [7]. Depending on the
particle size, confinement, and initial conditions, the par-
ticles can interact by arranging themselves into dipolar or
quadrupolar structures [2], or they can be bound by �1=2
disclination loops shared between both particles [11]. The
homogeneous director field environment energetically dis-
favors linking and knotting, which reveals the more basic
rewiring properties of entangled states.
We demonstrate that differences between dimer struc-

tures are localized to tetrahedral regions around crossings
of disclinations (Fig. 1), from which we derive rules for
calculating the self-linking number and classifying all
dimer structures. The rewiring rules apply to structures
involving �1=2 disclinations in any confinement and can
be used to predict and design nematic braids consisting of
complex linked and knotted loops.
We start by examining the similarities of two dimer

disclination configurations [11]. The ‘‘entangled hyper-
bolic defect structure’’ (referred to as the theta structure
from here on) is the only dimer structure with space
inversion symmetry and consists of two perpendicular
loops, one encircling both particles and the other placed
symmetrically between them [Fig. 1(a)]. The ‘‘omega
structure,’’ on the other hand, consists of a single loop
wrapped around both particles and has two chiral isomers
[Figs. 1(b) and 1(c)]. All three structures have similar
director field and line geometry at the far ends of the
colloidal particles and along the vertical axis (Fig. 5 in
[11]). They only differ in the way the left arc, right arc, and
central loop meet between the particles [see the encircled
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areas on Figs. 1(a)–1(c)]. The conversion of one structure
into another is achieved by rewiring the crossing, while
leaving the remote field intact, which requires a cutting of
disclinations. The resulting four end points define a tetra-
hedron that encloses the rewiring site. Inside the tetrahe-
dron, two perpendicular disclination segments connect
pairs of the four vertices [Fig. 1(d)]. Experimentally, re-
wiring is achieved by local laser melting of a nematic [13].

The threefold symmetry of �1=2 disclinations (Fig. 2)
entering the tetrahedron through the vertices coincides
with the C3 tetrahedral symmetry axes. The director field
inside the tetrahedron has intrinsic dihedral symmetry
(D2d), ensured by the relative positioning of the disclina-
tions. Because of this symmetry and the profile of the
disclinations, the director field stands perpendicularly to
all the faces of the tetrahedron and makes hyperbolic turns
at all the edges, thus completing the full tetrahedral

symmetry of the director field on the surface of the tetra-
hedron. Consequently, rotations from the tetrahedral sym-
metry group preserve the continuity of the disclination
lines and the surrounding director field and therefore
always generate physically possible structures. As the dis-
clination segments inside the tetrahedron have lower sym-
metry (D2d) than the field on its surface, rotations around a
chosen C3 symmetry axis generate 3 distinct configura-
tions of disclinations, depicted in Fig. 1(d).
The real director field deviates from perfect tetrahe-

dral symmetry in order to accommodate the proximity
of the particles and to minimize the free energy.
However, it only differs from the idealization by a con-
tinuous transformation, so the topological invariants are
not affected. In further derivations, we assume this
symmetry to be exact.
The director field surrounding a disclination may rotate

around the disclination line tangent. In a closed loop,
rotations are restricted by the fact that the director field
must be continuous. The loop, together with the orientation
of its cross section, can be described mathematically by a
ribbon (Fig. 2). A ribbon can be assigned a self-linking
number Sl a topological invariant that labels how many
times it turns around its tangent in the course of one loop.
Because of the three fold symmetry of disclinations, the
self-linking number is not restricted to integers, but can
assume any third-integer value (Fig. 2). Using Călugăreanu
theorem, we can decompose the self-linking number into
writhe and twist [20,21],

Sl ¼ Wrþ Tw: (1)

Writhe depends on how the loop changes direction in
space, while twist contains information about the local
torsion of the ribbon around its axis. Consider the theta
structure [Fig. 1(a)]. Up to an arbitrary homotopic trans-
formation, the structure is completely symmetric and both
loops are planar. Both twist and writhe therefore equal
zero, which can be verified using the corresponding
Gauss integral definitions [20,22]. Tetrahedral rotation of
a portion of the ribbon does not change the twist, as it is
defined as an integral of local twist density, which is
preserved by rigid transformations. As we have shown
that the theta structure has zero twist, the same holds for
all entangled dimer structures. It follows from Eq. (1) that
in this idealization the self-linking number equals the
writhe. The physics of nematic liquid crystals is hidden
in the transformation rules for rewiring and is not involved
in the computation of writhe, which only depends on the
disclination loop geometry.
In practice, disclination loops do not necessarily have

zero twist, but this can always be changed by continuous
transformations that preserve the topology of the structure.
The twist and writhe convert into each other under such
transformations, but their sum remains equal to the self-
linking number, calculated in our idealized case.

FIG. 2 (color online). To describe a disclination line, we
introduce a ribbon, defined by an axis curve and a secondary
curve that follows the orientation of the field cross section of the
disclination. The ribbon may reconnect with itself with an offset
angle of �120� while keeping the director field continuous, due
to the symmetry of its cross section.

FIG. 1 (color). Rewiring sites of different dimer structures.
(a)–(c) Theta structure and two chiral omega structures (simu-
lations by Ravnik [7]). Rewiring sites are marked and paired
with corresponding idealized structures. (d) The three confor-
mations of a disclination crossing with tetrahedral symmetry.
Rewiring is performed by rotating around a C3 symmetry axis of
the tetrahedron.
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Since the writhe only depends on the axis curve of a
ribbon, ordinary loops can be used instead of ribbons. We
use the tantrix representation: the loop is mapped to the
unit sphere of tangents. Fuller’s formula [16] expresses
writhe in terms of the spherical area A enclosed by the
tangent indicatrix (tantrix) loop. The writhe given by this
formula has modulo 2 ambiguity because full 4� wraps do
not change the tantrix loop,

Wr ¼ A

2�
� 1mod 2: (2)

The tetrahedral rotations change which pairs of the vertices
are connected by segments of the disclination loop. Each
loop segment is planar and maps to a great circle arc on the
tantrix sphere [Fig. 3(a)]. The end points of these arcs are
the tangents through the vertices of the tetrahedron, which
form a square on the tantrix sphere. Rewiring induced by
the tetrahedral rotation changes the enclosed area by
�4�=6, which by Fuller’s formula (2) corresponds to a
�2=3 change in writhe. This is consistent with the restric-
tion of the self-linking number to thirds, imposed by the
symmetry of �1=2 disclinations (Fig. 2). It can be shown
that the modulo 2 ambiguity in Eq. (2) can be dropped in
our case [22]. As the tangents flip sign if the parametriza-
tion of a curve is reversed, the �2=3 change in writhe is
correct only for tetrahedral rotations that preserve continu-
ous parametrization of the loops. If this is not the case,
the change in writhe can be calculated by finding a
succession of multiple rewirings that result in the same
structure [Fig. 3(b)].

We can generalize the notion of writhe for a union of two
or more loops Ai that may or may not be linked. The Gauss

integral that defines writhe decomposes into writhes of
individual loops, which equal self-linking numbers,
SlðAiÞ, and linking numbers LkðAi; AjÞ between pairs of

loops [22]

Wr ðA0 [ � � � [ AnÞ ¼
X

i

SlðAiÞ þ 2
X

i>j

LkðAi; AjÞ: (3)

Combining this with the fact that every parametrization-
preserving rewiring changes the total writhe by �2=3 and
changes the number of loops, n, by one [23], we can write a
conservation law

3

2

�Xn

i

SlðAiÞ þ 2
Xn

i>j

LkðAi; AjÞ
�
þ n ¼ qmod 2: (4)

Linking numbers are integers with ambiguously defined
sign and the number of loops may either increase or
decrease by one, hence the modulo 2. This relation is a
generalized conservation of topological charge q [12] and
reflects the fact that, due to the presence of line defects,
only the even or odd parity of q is conserved [12,24]. The
interpretation of q as the topological charge can be justified
with an example. Consider q homeotropic spherical parti-
cles in a planar nematic cell, each with its own Saturn ring
loop [2]. Such a system satisfies the above equation as it
contains n ¼ q unlinked loops with Sl ¼ 0. Entangled
structures can be reached by applying successive tetrahe-
dral rotations, which preserve both the left side of Eq. (4)
and the topological charge.
The derived formalism can be demonstrated using

our dimer structures. There are two rewiring sites
situated symmetrically between the colloidal particles.

FIG. 3 (color). (a) Tetrahedral rotation changes the positions of two disclination line segments, which also changes the curve, traced
by the tangent on the unit sphere. The spherical area traced by this curve changes by�4�=6 (shown in red), which is directly related to
the�2=3 change in writhe and consequently, the self-linking number. (b) Schematic depiction of dimer structures and transformations
between them. A tetrahedral rotation changes the writhe by �2=3 if parametrizations of initial and final structure are the same. By
varying the parametrization, we can calculate writhes of all different dimer structures. Depicted here are the theta, chiral omega, and
figure-eight structures and the pair of Saturn rings, with their respective self-linking numbers. Structures that consist of two loops are
shown with both possible choices of parametrization. Orientations of loop parametrizations are indicated by arrows.
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The 3� 3 ¼ 9 possible structures consist of one theta
structure, two equivalent structures with disjoint Saturn
rings, two equivalent pairs of chiral omega structures,
and a pair of chiral figure-eight structures. The theta struc-
ture has zero self-linking number and the others are
reached by successive tetrahedral rotations. The structures
with one loop have self-linking number �2=3, while the
structures with two loops have both self-linking numbers
equal to zero, which agrees with the conservation law (4).
The results are shown in Fig. 3(b).

The derived conservation law (4) holds for a set of
multiple linked loops as a whole. Individual constituent
loops have a self-linking number of the form p=3, where p
is even if an even number of disclinations pass through the
loop and odd in the converse case. This can be shown by
choosing an idealized model of a director field representing
such loop and determining mathematically which element
of the fundamental group the given director field represents
[12,24]. The calculation is carried out in [22].

We have shown that any rewiring of two orthogonally
crossing �1=2 disclinations is possible, as the topological
requirements are satisfied entirely by the changes in the
self-linking and linking numbers caused by the application
of the tetrahedral rotations. In contrast,þ1=2 disclinations
cannot form rich entangled structures, as they only allow
integer self-linking numbers. Under the restriction that
only �1=2 disclinations are present, the self-linking num-
bers of the loops are topological invariants, coupled with
surrounding topological charges by a conservation law. In
confined, chiral, and field-affected environments, however,
the type of the disclination profile may vary between�1=2
and twist disclinations [25]. Our findings do not apply
directly to such cases, as the self-linking number is ill-
defined if the disclination cross-section does not have
constant symmetry.

Our work introduces two important advances in the
theoretical understanding of nematic braids. By combining
the formalism of differential geometry with the character-
istics of nematic defects, we are able to show that the
self-linking number is a topological invariant of �1=2
disclination loops that successfully differentiates between
the loops and ensures the conservation of topological
charge. On the other hand, our explanation of local rewir-
ing by tetrahedral rotations gives a qualitative three-
dimensional image of disclinations and resolves the behav-
ior of director in complex disclination loop networks seen
in experiments and simulations [8,10,13]. The richness of
entangled structures increases with the number of available
rewiring sites, which are more abundant in chiral systems
[4,13]. The rewiring rules classify the set of possible braids
and allow a transparent design of new structures and guid-
ance of their experimental realization. Provided symmetry-
driven rewiring rules similar to our tetrahedral rotations
exist, our formalism can be extended to systems with

different line defects, crossing geometries [26], or any
system with a well-defined self-linking number (e.g.,
loop DNA [17,27]).
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