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We demonstrate theoretically how local strains in graphene can be tailored to generate a valley-

polarized current. By suitable engineering of local strain profiles, we find that electrons in opposite valleys

(K or K0) show different Brewster-like angles and Goos-Hänchen shifts, exhibiting a close analogy with

light propagating behavior. In a strain-induced waveguide, electrons in K and K0 valleys have different

group velocities, which can be used to construct a valley filter in graphene without the need for any

external fields.
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Introduction.—In recent years, graphene, a single layer
of carbon atoms arranged in a hexagonal lattice, has shown
abundant new physics and potential applications in carbon-
based nanoelectronic devices [1–3]. The novel properties
arise from the linear energy dispersion and the chiral nature
of electrons at the K and K0 valleys of the Brillouin zone
[3]. Mathematically, the Dirac equation describing the
motion of massless quasiparticles is very similar to the
Helmholtz equation for an electromagnetic wave, except
for the negative energy spectrum. This remarkable fact
could make it possible to observe optical-like electron
propagating behavior and to construct Dirac electron-
optical devices with graphene [4]. The mean-free path of
electrons in graphene can approach microns at room tem-
perature, making electrons behave ballistically in a gra-
phene microstructure [5,6]. In such a ballistic regime, the
scattering of electrons by potential barriers can be under-
stood by comparing with the reflection, refraction and
transmission of electromagnetic waves in inhomogeneous
media. Therefore, graphene is a test bed to examine
optical-like phenomena of Dirac fermions. Several studies
have been devoted to such optical-like electron behaviors
using external electric bias [4,7–15]. These proposals re-
quire us to deposit a metallic gate above graphene, which is
an additional complication.

The strain effect in graphene provides a new way to
manipulate electron transport without external fields. The
two valleys in graphene are related by time reversal sym-
metry and act in much the same way as electron spin in
spintronics. The valley degree of freedom in graphene
might be used to control the characteristics of graphene-
based devices, referred to as valleytronics [16–18].
Realization of such valleytronics requires an effective
and robust scheme to produce valley-polarized currents,
although several schemes about valley filters were
proposed utilizing, e.g., the edge profile of graphene

nanoribbons, the trigonal warping effect in the energy
spectrum, and intense irradiation on a bilayer graphene
[18–21]. In this Letter, we propose a simple and effective
way to realize some optical-like behaviors of electrons and
valley filters by using the strain effect alone. We find that
electrons in opposite valleys can be perfectly transmitted
or totally reflected in the presence of strain. A quantum
waveguide formed between two strained regions (see
Fig. 1) can confine electrons in it and the reflected beam
is shifted laterally along the interface by a distance with

FIG. 1 (color online). Schematic of a strained four-terminal
guiding device including contacts I (injector), C (collector), and
G1, G2 (electrical ground 1, 2). Strain exists in the shaded
regions. The black arrow denotes the unpolarized incident elec-
tron beam. The red (blue) arrows stand for the K-valley
(K0-valley) polarized electron beams. A valley detector as pro-
posed in Ref. [24] could be connected to contact C to measure
the polarization. The detector is also a graphene-based device
with a substrate strain and a ferromagnetic (FM) strip.
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respect to the incident beam, as the Goos-Hänchen
(GH) effect [9] in optics. We demonstrate that the
valley-dependent GH effect in graphene results in different
group velocities for electrons in K and K0 valleys.

Model.—Mechanical strain in graphene can be described
by a gauge vector potential. To illustrate the operating
principle of the proposed device, we take a simplified
gauge field which is equivalent to a delta-functionlike
antiparallel magnetic double barrier perpendicular to the
graphene monolayer, but with opposite direction at K and
K0 valleys [22,23]. The Landau gauge A ¼ ð0; Ay; 0Þ is

adopted in our calculation. The length scale of the spatial
variation of the pseudo gauge vector potential is much
larger than the lattice spacing of graphene, which implies
that intervalley scattering is weak at low-energy regions.
The low-energy electrons can be well described by the

effective Hamiltonian H ¼ vF�
ð0Þ � ðpþ �Ai=vFÞ þ Vi,

[17] where the superscript i indicates the different regions

(see Fig. 2), vF is the Fermi velocity, �ð0Þ (� 0 ¼ ��) are
the pseudospin Pauli matrices, p is the electron momen-
tum, Vi is the electrostatic potential in the region i, and
� ¼ �1 labels K and K0 valleys. In the calculation,
we introduce the dimensionless length and energy units:

lB ¼ ð@=eB0Þ1=2, E0 ¼ @vF=lB (which are 81.1 nm and
7.0 meV for a typical pseudomagnetic field B0 ¼ 0:1 T).

Brewster-like angle.—We start by investigating electron
transmission through a region of uniform uniaxial strain
with width D as shown in the inset of Fig. 2. Here, we
set Vi ¼ 0 for simplicity since the key physical mechanism
to introduce the valley-dependent Brewster angle is the
gauge vector �A. The translational invariance along the y
direction gives rise to conservation of transverse wave

vector ky, and thus the solutions can be written as c ðx;yÞ¼
c ðxÞeikyy. In the strained region, the longitudinal wave

vector kx;� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE2 � ðky þ �AyÞ2
q

has a different depen-

dence on the vector potential for the two valleys denoted by
� ¼ �1, since the strain-induced pseudomagnetic fields
have different signs for the two valleys. The reflected
amplitude reads

r�¼
sinðkx;�DÞðsin���sin�Þðsin�� icos�Þ

sinðkx;�DÞð1�sin�� sin�Þþ icosðkx;�DÞcos��cos�;

(1)

where the incident and refractive angles are defined as� �
arcsinðky=EÞ and �� � arcsin½ðky þ �AyÞ=E�. These ex-

pressions are valid for incident angle �<�c;� �
arcsinðjky þ �Ayj=EÞ. �c;� is the critical angle for total

reflection in optics and sin��= sin� ¼ ðky þ �AyÞ=ky � n

gives Snell’s law for transmitted electrons. Note that when
kyðky þ �AyÞ< 0, the refractive index n of the strained

graphene is negative just like for a metamaterial with a
negative refractive index. Importantly, one can tune the
refractive index n mechanically in quite a large range,
which is not so for the metamaterials. When �>�c;�,

electron beams can be totally reflected at such a strained
barrier, since the longitudinal wave vector kx;� becomes

imaginary accounting for the occurrence of evanescent
modes in the barrier.
Figure 2 shows the angular dependence of the trans-

mission probability T� ¼ 1� jr�j2, which exhibits a re-

markable valley dependence. It is obvious that
T�ð�Þ ¼ T ��ð��Þ, where �� ¼ ��; i.e., the transmission

of electrons in K and K0 valleys shows a mirror symmetry
about � ¼ 0. This feature is guaranteed by the time re-
versal symmetry in strained graphene. In the presence of
uniform uniaxial strains, the wave vectors of electrons in
the K valley satisfy the relationship k2x;�1 þ ðky � AyÞ2 ¼
E2 as indicated by the red arc curve. When jky � Ayj> E,

(equivalent to � 2 ½��=2; �c;��), the wave vector k0x in

the strained region becomes imaginary, indicating the ap-
pearance of evanescent modes; thus, transmission is totally
blocked. The critical angle for total reflection is given by
Snell’s law, �c;� ¼ arcsin½ðAy � EÞ=E�. Thus the trans-

mission window of electrons in K valley is restricted to the
red shadowed region (� 2 ½�c;�; �=2�), as shown in

Fig. 2(a). In contrast, the transmission of electrons in K0
valley shows mirror symmetry behavior with respect to that
in K valley. Similarly, the critical angle for electrons in K0
valley is given by �c;þ ¼ arcsin½ðE� AyÞ=E�. As a con-

sequence, there exist mirror symmetric transmission win-
dows for K and K0 electrons that can be completely
separated by increasing the strain gauge fields [Fig. 2(b)].
One can see in Fig. 2 that for some specific incident angles
�B, resonant peaks that reach perfect transmission exist in
different windows for electrons in the K or K0 valley. This
can be readily checked by analyzing the zeros of the

FIG. 2 (color online). The transmission probability T as a
function of the incident angle �. In the strained region, the
wave vectors of electrons in the K (K0) valley satisfy k2x;� þ
ðky þ �AyÞ2 ¼ E2 as indicated by the red (blue) arc curve. The

red (blue) dashed region indicates the transmission window for
electrons in the K (K0) valley. (a) E ¼ 10, Ay ¼ 5, D ¼ 1.

(b) E ¼ 10, Ay ¼ 15, D ¼ 2.
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reflected amplitude r corresponding to sinðkx;�DÞ ¼ 0. The

perfect tunneling peaks are fully coincident for
kx;� ¼ n�=D [see Fig. 2(b)]. The number of resonant

peaks increases with the incident energy E and the width
D of the strained region. Note that if such resonant peaks
for one valley � are located in the transmission gap for the
other valley ��, we can obtain valley-� polarized trans-
mitted electron beams and valley- �� polarized reflected
beams. These characteristic angles are analogous to the
so-called Brewster angle in optics, at which s- and
p-polarized light are produced. We can propose a valley
polarization device that is straightforward and analogous to
the Glan-Thompson optical polarizers. The strained stripe
leads to perfect transmission of one valley component and
total reflection of the other valley components when elec-
tron beams are incident at the Brewster-like angles �B.

Valley-dependent Goos-Hänchen effect.—In analogy
with total reflection of light at the interface between two
materials with different refractive indexes, the electronic GH
effect describes the shift �GH of the reflected electron beam
for total internal reflection at an interface, along the trans-
verse direction. The GH shifts could be positive or negative,
which is determined by external electric [10] and/or inho-
mogeneous magnetic fields [11]. A uniform uniaxial strain
in graphene can lead to a valley-dependent GH shift
�GH;� ¼ ð2ky þ �AyÞ=ðkx��Þ, where � is the modulus of

the imaginary wave vector in the strained region in the case
of total internal reflection. For a waveguide formed in be-
tween two strained stripes as shown in Fig. 1, the trans-
mission gap at each interface can lead to the confinement of
electrons in the channel associated with multiple total inter-
nal reflections. The difference between the tunneling forbid-
den regions for electrons in different valleys gives rise to
valley-dependent electron propagation along the channel. In
the channel, the electronic GH shifts at each interface are
accumulated during multiple reflection processes.

The GH effect is found when there is total internal
reflection, and thus there are bound states localized in the
channel between the two interfaces as shown in Figs. 3(a)
and 3(b). The bound states exist only in the region between
the curves given by the equations jky þ �Ayj ¼ jEj and
jkyj ¼ jEj, i.e., the transmission gap as we discussed

above. The spectrum of each valley (K or K0) alone is

asymmetric, but for both valleys (K and K0), the total
spectra are mirror symmetric with respect to the transverse
wave vector ky, as required by time reversal symmetry.

That is very different from bound states in a pure electric
waveguide in graphene, where the bound states are valley
independent and always mirror symmetric with respect to
ky ¼ 0 [10]. The number of bound states increases with the

strain-induced gauge filed Ay. Three typical regions in the

energy spectrum are found. (i) E< Ay=2, i.e., �c;� ¼
��=2, the incident electrons from both valleys are always
totally reflected at the interfaces. The bound states for K-
or K0-valley electrons coexist for all incident angles. The
electrons in different valleys have different group veloc-
ities determined by the slope of the energy dispersion
relation. Thus such a waveguide may be used to separate
the electrons in different valleys after passing a sufficiently
long channel. Notice that there are several local minima in
the dispersion relation indicating a vanishing group veloc-
ity. Thus electrons in K or K0 valley will be trapped in the
waveguide, which can be used to construct a valley mem-
ory device. (ii) Ay=2<E< Ay, i.e., �=2>�c;� >

�c;þ >��=2, the incident electrons from both valleys

are confined in the channel for incident angles � 2
½�c;þ; �c;��. The transmission in such an angular window

is similar to that in situation (i). For �<�c;þ (or �>
�c;�), only the bound states for K valley (or K0 valley)
electrons appear, while electrons in K0 valley (or K valley)
are able to penetrate into the strained region and eventually
disappear from the channel region. So we can produce a
valley-polarized current in such a strain-induced wave-
guide. (iii) Ay < E, i.e., �=2>�c;þ >�c;� >��=2. In

this case, there is no coexistence of bound states for the K
or K0 valley. The transmission properties are similar as that
in case (ii) for �<�c;þ and �>�c;�. Note that this

valley-dependent transport property cannot be realized in
normal electric or magnetic waveguides proposed in pre-
vious works (see Refs. [10,11]).
Finally, we focus on how the valley-polarized transmis-

sion features shown above are reflected in the conductance
G. Recently, Williams et al. [15] reported fiber-optic guid-
ing of electrons in graphene. Differential resistance can be
measured using a standard lock-in technique and thus
guiding efficiency can be extracted. Our proposal depicted
in Fig. 1 is a valley-related version of their setup. Here the
guiding modes serve as valley-filtered modes while the
bulk modes are unpolarized. To distinguish these valley-
filtered modes from bulk modes, a higher guiding effi-
ciency is desired. High guiding efficiency can be achieved
by applying a uniform magnetic field as reported in
Ref. [15]. But in this Letter we propose a different scheme,
where an applied mechanical strain behaves like a delta-
functionlike pseudomagnetic field, with opposite direction
at the K and K0 valleys. We performed numerical simula-
tions of electrical conduction in a tight-binding model [19]
of a strained graphene stripe. The dispersion relation EðkyÞ
is plotted in Figs. 4(a) and 4(b). The guiding modes are

FIG. 3 (color online). The energy spectra for the lowest
channel modes in the stain-induced waveguides for (a) Ay ¼ 5,

D ¼ 1, and (b) Ay ¼ 15, D ¼ 2.
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formed in the interval of the bulk states as shown in the
dashed pentagon in Fig. 4(b). Note that when E< 3 eV, all
the forward-going guiding modes are located in the K0
valley, while the forwarding-going modes in the K valley
are solely bulk modes. The density distributions of elec-
trons in the lowest two forward-going modes in the K and
K0 valleys are shown in Fig. 4(c). Electron guiding modes
(in the K0 valley) and bulk modes (in the K valley) are
separated spatially in the channel and the strained region,
respectively. The conductance shows good correspondence
with the number of guiding modes rather than the much
larger number of transmission modes in the leads [see
Fig. 4(d)]. This is because electrons in bulk modes in the
lead leak out of the channel and eventually disappear
together with those in bulk modes in the strained region
via the electric grounds G1 and G2. The reason for the
oscillation of the conductance is that the stripe has a finite
width and some bulk modes in the strained region still
affect the conductance. One would expect that the con-
ductance will approach the guiding mode steps very well
when the strained regions are electrically grounded. The
guiding modes can effectively carry current from the in-
jector I to the collector C and thus dominate the channel
conductance. As we demonstrated that the guiding modes
are valley filtered, the desired valley-polarized current can
be measured in collector C. A valley detector as proposed
in Ref. [24] can be connected to the contact C to identify
the polarization. The detector shows a large valley-
resistance ratio, in analogy to the giant magnetoresistance
effect. Thus valley-polarized current could be identified by
measuring the conductance at terminal C2.

In summary, we demonstrated theoretically how a strain-
induced gauge field can be tailored to generate valley-
polarized transport in a single layer of graphene. Our results
show that the propagating behavior of electrons in graphene
exhibits deep analogies with light as a consequence of the
massless linear Dirac dispersion and the chirality of elec-
tron states. Most importantly, the gauge fields induced by
strain can lead to valley-dependent transport phenomena,
e.g., the Brewster angles and the Goos-Hänchen effect.
Electrons in a waveguide structure formed by two strained
stripes propagate along the channel with different velocities
at different valleys. This feature sheds new light on con-
structing graphene-based valleytronic device by using only
strain, without the need for any external fields.
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[5] B. Özyilmaz et al., Phys. Rev. Lett. 99, 166804 (2007).
[6] S. V. Morozov et al., Phys. Rev. Lett. 100, 016602 (2008).
[7] C. H. Park et al., Nano Lett. 8, 2920 (2008).
[8] P. Darancet, V. Olevano, and D. Mayou, Phys. Rev. Lett.

102, 136803 (2009).
[9] F. Goos and H. Hänchen, Ann. Phys. (Leipzig) 436, 333

(1947).
[10] C.W. J. Beenakker et al., Phys. Rev. Lett. 102, 146804

(2009).
[11] X. Chen, C. F. Li, and Y. Ban, Phys. Rev. B 77, 073307

(2008).
[12] A. Concha and Z. Tes̆anovié, Phys. Rev. B 82, 033413
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FIG. 4 (color online). (a) Energy dispersion of a strained
graphene ribbon with width N ¼ 140 (in units of honeycombs)
[19]. Lateral strains are applied on the ribbon except the middle
part as shown in Fig. 1. K0 is a reciprocal lattice vector. (b) A
blowup of the box region in panel (a). (c) Density distributions of
electrons in the lowest two forward-going modes with ky ¼
�0:60K0 in the K0 valley and ky ¼ �0:18K0 in the K valley.

(d) Conductance versus incident energy. The blue (green) curve
gives the number of propagating modes in the channel (lead).
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