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The error rate in complementary transistor circuits is suppressed exponentially in electron number,

arising from an intrinsic physical implementation of fault-tolerant error correction. Contrariwise, explicit

assembly of gates into the most efficient known fault-tolerant architecture is characterized by a

subexponential suppression of error rate with electron number, and incurs significant overhead in wiring

and complexity. We conclude that it is more efficient to prevent logical errors with physical fault tolerance

than to correct logical errors with fault-tolerant architecture.
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Great effort has been devoted to realizing Moore’s law
[1], whereby the number of components on a single
integrated circuit doubles approximately every 2 years.
With a greater number of components switching at higher
rates, a greater amount of information can be processed
per unit of space and time. The most fundamental limit to
information processing is set by the spacetime density of
physically distinguishable state transitions admitted by
quantum mechanics and general relativity [2]. In the
more immediate future, computers are unlikely to be
very different from contemporary integrated circuits: an
essentially planar technology that uses electromagnetic
interactions between electrons at room temperature and
with energy supplied at an electrochemical potential of
�1 eV. Logical gates approaching the molecular scale
have been proposed [3], where a bit might be stored on a
single electron charge or spin. Limitations are imposed by
heat dissipation, wiring, and reliability [4,5]. The logic
error rate is presently �10�27 per gate operation accord-
ing to data from the International Technology Roadmap
for Semiconductors (ITRS) [6]. Entropy is introduced
into the physical state of charge carriers by thermal
fluctuations and structural disorder, both of which are
increasingly important in devices of reduced physical
dimension. The connection between thermodynamics
and computation has been well elaborated [7,8], but,
nonetheless, the minimum physical system size required
for fault-tolerant logic has received comparatively little
attention. The related question of minimum system size
for storing information has been investigated [9], where
the particle number emerges as a natural, dimensionless

size parameter. We likewise adopt the electron number as
a dimensionless size parameter.
von Neumann proposed [10] fault-tolerant architectures

for computing with faulty components, a concept now
extended to triplicate modular redundancy at the system
level [11] and gate-level quantum error correction [12–14].
Fault-tolerant architectures are effective in correcting
physical errors in nanoscale devices [15–17], but is the
fault-tolerant architecture approach optimal for maximi-
zing functional density? It has been postulated that topo-
logical excitations of many-body systems provide inherent
physical fault tolerance for quantum computation [18,19]
in lieu of architectural redundancies. Inspired by this de-
velopment, we compare the error suppression performance
of inherent physical fault tolerance versus architectural
fault tolerance for classical computation. The error-rate
scaling laws that we derive for complementary transistor
logic subject to thermal fluctuations, and ballistic gates
subject to atomic placement disorder, are compared in
Table I to that of a fault-tolerant architecture.
Complementary transistor logic gates can have an in-

herently low error rate. CMOS is the most prevalent form of
complementary transistor logic, but new materials such as
carbon nanotubes [20,21] and semiconductor nanowires
[22,23] can also be used for complementary logic. All
operate by carrier transport over potential barriers.
Physical redundancy and dissipation, associated with en-
tropy removal, stabilizes circuit outputs against the effects
of thermal noise and material disorder. The information
theoretic origin of robust transistor gate behavior can be
explained by considering transistor gate operation in terms
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of charge, rather than voltage. A representative, comple-
mentary transistor implementation of the universal NAND

gate is illustrated in Fig. 1.
Each input charge carrier’s presence on an input gate

capacitance can be associated with a physical bit value of
1 or 0, while the output is similarly composed of physical
bits associated with the presence of charge carriers on the
output node. The logical value of an input (output) is
represented by the net polarity of the input (output) charge.
At the sacrifice of speed, the greatest suppression of error
can be achieved with transistors working at subthreshold.
The electron-hole conductance will be ideally of the form
Gn=p ¼ Gn0=p0

expð�eVGS=kBTÞ, and the relation between
input charge and output charge for the NAND gate is

Nout ¼ N

2

Gp �Gn

Gp þGn

¼ �N

2
tanh

�
Nin

kBTC=e
2

�
; (1)

where Nin is an effective input charge defined by
expð�e2Nin=kBTCÞ¼expð�e2NA=kBTCAÞþexpð�e2NB=
kBTCBÞ, N=2 is the charge of a fully polarized node, Gn=p

is the conductance of the complementary transistor net-
works, and kBTC=e

2 is the charge number equivalent of the

thermal voltage. The NAND gate suppresses input charge
fluctuation from the output charge provided the input
fluctuation remains below the noise margin where
j@Nout=@Ninj< 1. With the characteristic of Eq. (1), the
noise margin is � � N=2 where � ¼ ½1� ðkBT=eVÞ�
lnðeV=kBTÞ� � 0:90 for a typical operating voltage
V ¼ 1 V at room temperature. Charge fluctuations below
�0:45N are thus suppressed, as compared to the N=2
threshold of an ideal majority vote. The probability P
that a thermal charge fluctuation h�Nini2 ¼ kBTC=e

2 at
the input of a circuit induces a fault at the input to a
subsequent circuit will be the probability that the noise
margin is exceeded. Considering a fully polarized input,

P ¼ R�ð1��ÞðN=2Þ
�1 pðNinÞdNin where pðNinÞ ¼ ð2�kBTC=

e2Þ�1=2 expð� ð1=2Þe2ðNin � N=2Þ2=kBTCÞ, evaluated in
Table I.
The complementary transistor gate error probability P

scales as an ideal majority vote of N samples with
error rate p ¼ �2=4 ¼ expð��2eV=4kBTÞ=4 per sample.
The majority vote is physically implemented by the com-
petition to polarize the output charge per Eq. (1), with
electron-hole channel transistors undergoing opposing
metal-insulator phase transitions. The same physical fault-
tolerance mechanism applies to other complementary tran-
sistor gates such as the buffer and more complex logic
functions. This suppression of fault probability from input
to output is the error correcting process that allows one to
construct extremely complex networks of complementary
logic without the destructive growth of correlated fluctua-
tions, and thus logic errors, from one circuit to the next.
Once operating voltage and temperature are determined, it
is the logic element size (i.e., number of charges) that has
the most profound effect on suppressing the propagation of
fluctuations. The metal-insulator phase transition in the
transistor channel is more sharply defined with increasing
electron number [24], and the gate is consequently better
able to discern the polarization of the input charge.
For device dimensions well below �100 nm, the ballis-

tic regime of device operation is approached. We consider
the scaling of error in the representative ballistic system of
a single electron spin [25] and more generally N ¼ 2j
coupled electrons forming a single magnetic moment
with total spin j [26–28]. The spin orientation along a
reference axis z can be used to represent a classical logical
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FIG. 1 (color online). Universal NAND gate. (a) The output
chargeNout versus input charges NA and NB for a complementary
transistor technology. (b) A majority vote physically imple-
mented by competing transistor conductances Gn and Gp sup-

presses fluctuations in input charge from the output. The entropy
of suppressed fluctuations leaves the system through a coupled
heat bath, such as substrate phonons.

TABLE I. Comparison of physical and architectural error suppression. Logical error-rate approximations for N � 1 are given.

Error source Error per particle Logical error

Ideal majority vote � � � p P ¼ ð N
N=2ÞpN=2 � ð2=�NÞ1=2ð4pÞN=2

Subthreshold gate Thermal � ¼ expð��2eV=8kBTÞ �2=4 P ¼ 1
2 erfcð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ln½1=��p Þ � 1

2 ð2=�N ln½1=��Þ1=2�N
Ballistic gatea Disorder �’ ¼ �n� � �r=r �’2=4 P� ð2=�NÞ1=2�’N

Architectureb Physical gate error p P � �Tðp=�TÞNlog2= logc

aInterparticle interaction of the form Vi / 1=rn
bTriplicate concatenated code, c ¼ 3 without error correction ancillae, c ¼ 9 with error correction ancillae.
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bit. We consider just one way in which errors may arise: the
precision of spin placement to a distance �r. Ballistic
interaction of two neighboring spins could be implemented
by the dipole-dipole interaction Vi / �2=r3. The deviation
�r in spin position leads to a deviation in the interaction
�Vi ¼ �3V�r=r. Unitary evolution by Schrödinger’s equ-
ation dictates that a spin rotation error �’ ¼ ��Vit=@will
develop over an interaction time t. The time t must be
sufficiently long to accumulate at least � ¼ Vit=@ radians
of spin rotation, corresponding to a classical bit inversion.
The spin rotation error incurred in this operation is �’ ¼
�3��r=r radians. With a single electron spin, the proba-

bility that the deviation �’Ĵx causes an erroneous spin

flip is P ¼ jhþ1=2j expði�’ĴxÞj � 1=2ij2 ¼ �’2=4. The
larger Hilbert space of an @N=2 spin than that of a
single spin @=2 permits a greater tolerance for interaction
errors without inducing a reversal of spin polarization.

With N ¼ 2j electron spins, the deviation �’Ĵx ca-

uses an erroneous spin flip with probability P ¼P
m>0jhmj expði�’ĴxÞj � jij2, approximated in Table I

for N � 1.
Surprisingly, the error rate in the N ¼ 2j electron spin

system is equal to that of a majority vote taken on N
independent spins with �’2=4 error probability per spin.

With an error in spin placement of �r ¼ 2:5 �A and a spin
separation as large as r ¼ 100 nm, the phase �’ ¼
0:0236 ¼ 1:3	 and the error probability for a single spin
�’2=4 ¼ 1:4� 10�4. A minimum of N ¼ 17 spins would
be required to reach an error probability of P� 10�27.
Similar error estimates P� ð�r=rÞN arise for most other
interactions, e.g., the Coulomb interaction Vi ¼ e2=r be-
tween electrons in charge based devices. Errors arising
from a coupling to a thermal bath can be similarly mod-
eled, where the effective deviation in potential �Vi is
ascribed to thermal fluctuations.

We consider now the error scaling of architectural fault
tolerance for universal computation. A fault-tolerant archi-
tecture is characterized by [13,14] encoding of logical bits
into physical bits, detection and correction of physical
errors in the encoded logical bits, a universal set of logic
operations performed directly on encoded bits. The latter
condition implies that only the repetition code is suitable
for classical universal computation. The simplest and most
efficient architecture is a concatenated repetition encoding
with a universal majority gate [29] of Fig. 2. A hierarchy of
concatenated encoding is recursively defined, with the final
concatenation level L determined by the required error
probability. The logical error rate of an architecturally
protected bit is given in Table I, where p is the unprotected
gate error rate and �T is a threshold error rate, estimated to
be 1=108 [29,30]. The bound in error rate of Table I can be
turned to an equality through numerical refinement of �T ,
while preserving the characteristic subexponential scaling
of error with physical bit number N [31]. The subexpo-
nential scaling of logical error rate with physical bit

number, and thus electron number, distinguishes architec-
tural fault tolerance from physical fault tolerance. The
number of physical bits required to protect a level L logical
bit is N ¼ 3L neglecting error correction ancillae, or
N ¼ 9L if error correction ancillae are included.
The logical error rates for physical and architectural

fault-tolerant schemes are compared in Fig. 3 for device
operating voltages anticipated by the ITRS [6]. The archi-
tectural model was applied to physical gates with thermally
limited error rate with eV ¼ 0:97 eV, kBT ¼ 26 meV
and thus p¼ð1=2Þerfc½expð��2eV=8kBTÞ�¼ 2:9�10�3,
and ballistic single electron gate limited by atomic disorder

�r=r ¼ 2:5 �A=100 nm in Coulomb interaction (Vi / 1=r)
with corresponding error rate p ¼ �’2=4 ¼ 1:5� 10�5.
The physical fault tolerance intrinsic to subthreshold com-
plementary transistors gives superior error suppression per
electron number as compared to architectural fault toler-
ance. In short, constructing a fault-tolerant majority gate
from faulty majority gates is not as efficient as majority
voting implemented directly at the physical level in sub-
threshold complementary logic. Moreover, the overhead
associated with architectural fault tolerance can be signifi-
cant, particularly the wiring for addressing individual bits.
We also conclude that N ¼ 16–24 electrons are minimally
required to suppress thermally induced errors below the
error rate of P� 10�27 at room temperature. Sources of
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additional charge fluctuation such as elevated operating
temperature, charged defects, and parasitic signal coupling
will require an increased electron number. Similar scaling
of logical error with particle number will apply to any logic
element with a single particle error rate of order
� expð�eV=4kBTÞ=4 resulting from thermal excitation
across a potential barrier.

Universal computation thus appears to abide by the
adage ‘‘a stitch in time saves nine,’’ where it is more
efficient to prevent errors than to correct errors. Since
subthreshold logic effectively implements an ideal major-
ity vote, the question naturally arises as to whether a more
efficient architectural fault-tolerant scheme approaching
the ideal majority vote can be devised. The answer not-
withstanding, fabrication imperfections render the thermal
limit difficult to achieve, and the question remains as to the
physical limits to structural order, such as dopant atom
location, for a system with sufficient structural complexity
to permit universal computation.
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