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The dynamics of glass formation in monatomic and binary liquids are studied numerically using a

microscopic field theory for the evolution of the time-averaged atomic number density. A stochastic

framework combining phase-field crystal free energies and dynamic density functional theory is shown to

successfully describe several aspects of glass formation over multiple time scales. Agreement with mode

coupling theory is demonstrated for underdamped liquids at moderate supercoolings, and a rapidly

growing dynamic correlation length is found to be associated with fragile behavior.
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A unified theoretical framework within which the glass
transition may be understood does not currently exist. The
most significant theoretical advances have been concen-
trated near the early stages of slowing, leaving the inter-
mediate and late stages relatively poorly understood. Mode
coupling theory (MCT) [1] and molecular dynamics [2],
for example, have provided insight into the initial regime
of slowing above the so-called crossover temperature Tc,
but are ineffective when applied to the slower regimes that
occupy roughly 10 orders of magnitude in time between Tc

and the glass transition temperature Tg.

Time- or ensemble-averaged dynamic density functional
theories (DDFTs) [3–6] have been proposed as a more
efficient means of describing slow dynamics below Tc,
but several key issues remain unresolved: which of the
proposed equations of motion are most appropriate,
whether the details of the free energy significantly influ-
ence dynamics, and whether the detailed predictions of
MCT can be reproduced and eventually improved upon
by such theories. Mean-field DFT functionals are known to
typically produce multivalley free energy landscapes in
which an exponential number of aperiodic solid states
coexist below a certain T [7–9]. However, the nature of
the transition by which a liquid evolves toward and be-
tween these aperiodic solid states upon quenching is influ-
enced heavily by the microscopic dynamics and thus, in
DDFT, the equation of motion employed. Approximate
analytic results [5] indicate that two DDFT equations of
motion may describe a MCT-type glass transition, but
numerical simulations have confirmed only stretched ex-
ponential decay and super-Arrhenius slowing in related,
non-DDFT models [4]. Here we provide direct numerical
solutions for a candidate DDFT that considers both inertia
and damping, and utilizes the simplest DFT free energy,
the phase-field crystal (PFC) class [10].

The dimensionless Helmholtz potential of a two compo-
nent PFC system can be written [11]

F ¼
Z
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In this notation i ¼ A or B, ni ¼ nið ~r; tÞ þ �ni is the scaled
time-averaged number density of i particles, �ni is the
species average number density, B‘

i is related to the liquid
bulk modulus, qi sets the equilibrium distance between
particles of the same species, qAB sets that between A
and B particles, and wi, ui, Hi, �1, and �2 are constants
(see Ref. [10] for further discussion of how these parame-
ters relate to material properties). The terms multiplied by
Hi discourage ni < 0 and are the distinguishing feature of
the vacancy or VPFC model [11]. A hard ni � 0 cutoff
enforces the physical interpretation of ni as a number
density and in doing so produces a range of nonlinear
responses. The resulting solutions take the form of inter-
acting time-averaged density peaks, with local regions of
ni ’ 0 representing unoccupied, or vacancy, sites.
The simplest dynamics conserving ni may be written

@ni
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¼ r2 �F

�ni
þ ffiffiffiffiffiffi

Di

p
�i; (2)

where t is dimensionless time, Di � T, and �i is a
Gaussian stochastic noise variable with
h�ið ~r1; t1Þ�ið~r2; t2Þi ¼ r � r�ð ~r1 � ~r2Þ�ðt1 � t2Þ. A sec-
ond option is the overdamped equation of DDFT,
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�
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Di

p
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where nð ~r; tÞ is generally set to nið ~r; tÞ and
h�ið ~r1; t1Þ�ið~r2; t2Þi ¼ r � r½nð~r; tÞ�ð ~r1 � ~r2Þ�ðt1 � t2Þ�.
A third equation reintroduces some of the faster dynamics
by also including an inertial or wavelike term,
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where �i and �i are constants [12].
Previous PFC simulations indicate that Eq. (2) supports

metastable glassy states but in general produces a discon-
tinuous, nucleation driven liquid to glass transition [9].
Recent analyses of Eqs. (3) and (4) suggest that both
may recover the class of MCT equations for the liquid
dynamic correlators that successfully describe a wide
range of glass forming behaviors [5]. Here we numerically
investigate, without approximation, Eq. (4) with nð~r;tÞ¼1,
where the inclusion of stochastic noise implies a time-
averaged rather than ensemble-averaged interpretation of
DDFT [13]. Equilibrium liquid states at high Di were
quenched by lowering the stochastic noise amplitude
T ¼ T0Di at a rate _T, and the freezing transition was
analyzed for onset of vitrification or crystallization.

We begin with results for monatomic systems, outlined
in Fig. 1. For T * 1:6 the structure and dynamics are those
of a normal liquid. The measured intermediate scattering
functions [Fijðq; tÞ ¼ h�niðq; 0Þ�n�j ðq; tÞi=Fijðq; 0Þ] decay
exponentially, the corresponding average relaxation times
show an Arrhenius T dependence, and the structure factors
are characteristic of an equilibrium liquid state. The func-
tion SPðqÞ quantifies the structural correlations of the
localized peaks in the density field. We define SPijðqÞ ¼
h�nPi ðqÞ�nP�j ðq0Þi, where �nPi ðrÞ is a binary map of the

positions of the local number density peaks.
Below T ’ 1:6, the liquid begins to show signs of non-

equilibrium behavior and the onset of glass formation.
Fðq; tÞ becomes increasingly stretched and begins to ex-
hibit a shoulder, the average relaxation time briefly begins
to grow with a super-Arrhenius T dependence, and a split
second peak emerges in SPðqÞ. But signs of glass formation
persist only to the freezing temperature of the crystal, Tf.

Below this point crystallization interrupts the apparent
glass transition unless the liquid is rapidly quenched well
below Tf. The time-temperature-transformation (TTT)

diagram shown in Fig. 1(d) demonstrates this behavior.
The profile of the nose feature is typical for materials
with relatively marginal glass forming ability, such as
metallic glasses. Since long-lived glassy states are not
supported in the region 0:6 & T & Tf, one cannot study

a gradual dynamic transition from liquid to glass. This
behavior is expected for simple monatomic systems.

Thus we proceed to binary liquids and outline in Fig. 2
the qualitative behavior of one such model system for a
range of dynamic conditions, from highly underdamped
(�i=�i ¼ 100) to highly overdamped (�i=�i ¼ 0:01). The
chosen model contains equal number densities of A and B
atoms ( �nA ¼ �nB ¼ 0:075), and the equilibrium spacing of
A atoms is 20% smaller than that of B atoms (RA=RB ¼
qB=qA ¼ 0:8). Only the NN correlations are plotted in
Figs. 2(a)–2(c), where N denotes the full density field
nA þ nB. When damping dominates, an effectively stable

glass with dynamics resembling those of a strong glass
former is generated. The dynamic correlators are generally
best fit as a single exponential decay for all accessible T,
with increased stretching as T is lowered, but any plateaus
are absent or ill-defined in the �i=�i & 1 data. The relaxa-
tion times exhibit a nearly Arrhenius T dependence over
the entire accessible T range.
At the opposite extreme, when inertia dominates, a

transition with dynamics characteristic of fragile liquids
is generated. The dynamic correlators show both stretching
and clear plateauing as T is lowered, and the divergence of
the relaxation time is well fit by the Vogel-Fulcher form
[� ¼ A exp½B=ðT � T0Þ�]. This divergence becomes in-
creasingly super-Arrhenius at higher T as �i=�i grows.
The underdamped transition at this level of detail qualita-
tively resembles that described by MCT.
The fragility of the PFC liquid therefore appears to be

strongly linked with the balance of inertial and damping
terms in Eq. (4), �i=�i. The degree of fragility is in turn
correlated with the nominal spatial extent of cooperative
dynamic behavior, which is set by an inherent length scale
associated with the inertial term. This term generates wave
modes which propagate over a fixed length scale in a
crystal before being damped, and the resulting dynamic

correlation length follows �crystal
D � �i=�i [12]. In a nor-

mal liquid these correlations are largely suppressed by the
low density and weak structural correlations, so that

�
liquid
D � �

crystal
D . But with greater supercooling, as the

system becomes increasingly dense and solidlike, the
inertial correlations survive over length scales which likely
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FIG. 1 (color online). Glass formation and crystallization in
the monatomic VPFC model. (a) Fðq�; tÞ at various T where q�
corresponds to the first peak maximum in SPðqÞ, (b) SPðqÞ at
same T as in (a), offset vertically by 0:5n with n ¼ 0; 1; . . . ,
(c) Arrhenius plot of �� from Fðq�; tÞ, (inset) stretching exponent
�� from fit to Fðq�; tÞ ¼ exp½�ðt=��Þ�� �, (d) TTT diagram:
quenches from T ¼ 1:6 at various _T, points denote where
crystallization occurred. �nA¼0:15, B‘

A¼�0:9, qA¼1, wA¼0,
uA ¼ 1, HA ¼ 1500, T0 ¼ 1000, �A ¼ 1, �A ¼ 0:01, fB ¼
fAB ¼ 0, �x ¼ 1:0, �t ¼ 0:02, V ¼ 1283.
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approach �crystal
D . Roughly, �liquid

D ! �crystal
D � �i=�i as

T ! Tg [14].

The effects of this growing dynamic length scale are
therefore especially prominent in highly underdamped
systems, where its properties can be observed and quanti-
fied through finite size effects in Fðq; tÞ. For example,
when �i=�i ¼ 100 finite size effects become numerically
insurmountable below T ’ 0:4. Measurements indicate
that the average two point liquid static correlation length

�
liquid
S grows slowly, approximately as 1=T, while the dy-

namic correlation length grows more rapidly, as �liquid
D �

ðT � T0Þ�1�0:35 (see Fig. 3). This indicates that the super-
cooled liquid exhibits heterogeneous dynamics driven by
strong inertial effects. Similar links between slowing dy-
namics and growing dynamic correlation lengths have been
widely discussed [2,8,15–18].

A correlation between fragility and the length scale for
cooperativity is consistent with existing interpretations of
strong and fragile liquids [19]. We also find a relevant link
to recent experiments on colloidal glasses which demon-
strate a transition from strong to fragile behavior as
the elastic properties of the colloidal particles become

increasingly stiff [20]. When overdamped, Eq. (4) de-
scribes a very soft, viscoelastic solid, while elastic stiffness
and fragility both increase as damping is reduced. This is

because �i � vs �
ffiffiffiffi
E

p
, where vs is a sound speed and E is

the relevant elastic modulus. Greater elastic stiffness
should therefore correspond to reduced effective damping
and, we expect, increased fragility [21]. This agrees with
the trend found in Ref. [20].
Figure 3 shows simulation images of Nð ~rÞ for the

�i=�i ¼ 100 system averaged over various times at
T ¼ 1:225, 0.541, and 0.420. Caging is apparent at short
times for all T, but the long time averages at low T retain
more of their original structure as the peaks exhibit less
translational freedom. It is important to note that time
averages are shown at equal multiples of each liquid’s
relaxation time, not at equal t, so that time scales remain
normalized as T is varied. The continuous but rapid decline
in translational freedom as T is lowered signals a smooth
transition from liquidlike to activated dynamics. This is
consistent with the postulated crossover at Tc, below which
relaxations are expected to be limited by increasingly rare,
heterogeneously correlated cage escape events. This
transition coincides with the emergence of the plateau in
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FIG. 2 (color online). Binary VPFC results for various damp-
ing conditions. FNNðq�; tÞ at various T shown for �i=�i of
(a) 0.01, (b) 1, and (c) 100. (d) Arrhenius plot of the structural
relaxation times ��ij, (e) the same data (NN only) scaled to clarify

strong versus fragile behaviors, with Vogel-Fulcher fits shown as
solid lines and power law fits as dashed lines. Inset: ð�2

i =�iÞ��NN

vs SPNNðq�Þ, demonstrating deviation from scaling when inertial

effects become large. (f) SPNNðqÞ for �i=�i ¼ 100. �nA ¼ �nB ¼
0:075, B‘

i ¼ �0:9, qA ¼ 1, qB ¼ 0:8, wi ¼ 0, ui ¼ 1,
Hi ¼ 1500, T0 ¼ 1000, qAB ¼ 8=9, �1 ¼ 100, �2 ¼ 0,
�x ¼ 1:0, �t ¼ 0:025, V ¼ 643, 1283, or 2563.
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FIG. 3 (color online). Time-averaged density evolution in the
supercooled binary liquid with �i=�i ¼ 100. Nð~rÞ at
T ¼ 1:225 (top), 0.541 (middle), and 0.420 (bottom) averaged
over the indicated multiples of each system’s ��NN . A subcubic

section of each cell has been removed to reveal a portion of the
inner simulation. nAð~rÞ time averages are black and gray (or-
ange), nBð~rÞ time averages are black and white. Bottom
right: Log plot of static and dynamic correlation lengths versus
1=ðT � T0Þ. The dashed red line has a slope of 1.0.
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Fijðq; tÞ and the split second peak in SPNNðqÞ below T ’ 0:6,

as shown in Fig. 2.
Figure 4 shows data for the �i=�i ¼ 100 system rele-

vant for comparison with the predictions of MCT. The
nonergodicity parameter, fijðqÞ [height of the plateau in

Fijðq; tÞ], is plotted in Fig. 4(a) for T ¼ 0:420. It follows

the normal MCT behavior in which fij decays while

oscillating in phase with SijðqÞ. Some of the dynamic

scaling behaviors predicted by MCT are tested in
Fig. 4(b). Present results indicate that the von Schweidler
scaling for late � relaxations (initial decay after plateau),
Fðq; tÞ ¼ f� Bðt=�Þb, is obeyed reasonably well over 2–
3 orders of magnitude in time. The measured exponent b ’
0:45� 0:15 is comparable to typical values. Fits to the
MCT critical decay power law (initial decay to plateau),
Fðq; tÞ ¼ fþ At�a, give a ’ 0:3� 0:1.

The late � relaxations predicted by MCT are generally
well approximated by a stretched exponential decay. Our
data are fit quite well by this form, as shown in Fig. 4(b),
but with a stretching exponent� that decreases with T from
approximately 1 to 0.6. MCT also predicts that the initial
divergences of the fast and slow relaxation times follow

power laws, �� � ðT � TcÞ�1=ð2aÞ and �� � ðT � TcÞ�	,

respectively, where 	 ¼ 1=ð2aÞ þ 1=ð2bÞ. Fits to these
forms are shown in Fig. 2(e), and though the Vogel-
Fulcher fits are superior, the power laws are reasonably
accurate through the early super-Arrhenius growth.

These results confirm that the DDFT equation of motion
with inertia does in fact describe a glass transition, and that
when damping is weak this transition strongly resembles
both the structural glass transition observed for fragile
glass formers as well as that predicted by MCT. Our results
are consistent with a picture in which fragility is driven by
a large dynamic correlation length, which in some cases
can be associated with large elastic moduli. A direct test of
this association could be performed using colloidal sys-
tems such as those of Ref. [20]. By varying the degree of
confinement, one could compare the relative magnitudes
and growth rates of any dynamic correlation length as
behavior is varied from strong to fragile.
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