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We give numerical evidence that the two-dimensional nonequilibrium zero-temperature random field

Ising model exhibits critical behavior. Our findings are based on the results of scaling analysis and

collapsing of data, obtained in extensive simulations of systems with sizes sufficiently large to clearly

display the critical behavior.
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During the past three decades, the random field Ising
model (RFIM) has been intensely studied [1,2] as a model
for cooperative behavior in magnets with quenched disor-
der. A particular line of research was on the disorder-
induced phase transition in the zero-temperature version
of RFIM [3], due to its conceptual importance and rele-
vance for interpretation of Barkhausen noise data [4].

Renormalization-group and numerical studies [5,6] of
nonequilibrium zero-temperature RFIM revealed a non-
trivial critical behavior for system dimensions 2< d< 6,
and mean-field criticality [7] for d � 6. Gradually, many
similarities with the criticality of equilibrium zero-
temperature RFIM [8] were observed, leading ultimately
to the conclusion that both models are very likely to be in
the same universality class [9] for d � 3. However, despite
considerable effort [10], the important question about the
criticality of the nonequilibruim model in 2D remained
unresolved [2], which motivated us to reconsider the
problem.

In this Letter we give numerical evidence for the critical
behavior of the nonequilibrium zero-temperature random
field Ising model in two dimensions. The model treats a
system of Ising spins Si ¼ �1 located at a square lattice of
size L with periodic boundary conditions. The nearest
neighbor hi; ji spins are ferromagnetically coupled with
strength J. Besides, each spin experiences a uniform
external magnetic field H, and a quenched local random
field hi. Thus, the RFIM Hamiltonian is H ¼
�J

P
hi;jiSiSj �H

P
iSi �

P
ihiSi, while the effective field

acting on the spin Si is heffi ¼ J
P

jSj þH þ hi. In what

follows, we take J ¼ 1.
While its sign is equal to the sign of heffi the spin Si is

stable—otherwise, it flips. This rule defines the dynamics
of the nonequilibrium model when the system is driven by
an increase of H from �1 (and all spins are �1) to þ1
(when all spins are þ1). We consider only the adiabatic
regime: H is increased so as to trigger only the least stable
spin, and then kept constant until all spins become stable.

The system evolution depends on the local quenched
field. Its values hi at different lattice sites are chosen
randomly and independently from some zero-mean

distribution �ðhÞ, so hhii ¼ 0 and hhihji ¼ 0. Here we

use a Gaussian distribution �ðhÞ ¼ 1ffiffiffiffiffi
2�

p
R
expð� h2

2R2Þ whose
standard deviation R quantifies disorder in the system.
We report that in the 2D case, as in higher dimensions, a

critical disorder Rc exists. It separates two different
regimes—see Fig. 1: for R> Rc the magnetization curve
MRðHÞ is a smooth function of H, while for R< Rc a
majority of spins flip in a single system-spanning ava-
lanche, causing a jump in magnetization. For R ¼ Rc, the
magnetization curve is still smooth, but has an infinite
slope dMRc

ðHÞ=dH at the critical field Hc.

Near the critical point (Rc, Hc), magnetization scales
as [2,6]

mRðHÞ � jrj�M�ðh0=jrj��Þ; (1)

implying that the scaled quantities mRðHÞ=jrj�, plotted
against h0=jrj��, fall onto a single curve: Mþðh0=jrj��Þ

FIG. 1 (color online). Magnetization curves MRðHÞ for disor-
ders R ¼ 0:52� 0:76 and system size L ¼ 131 072 for which
Reff
c ¼ 0:605—see Eq. (10). For R< Reff

c , the value Hsp of

external magnetic field at which spanning avalanche occurs
varies with random field configuration (RFC). Main panel:
magnetization curves for single RFC sorted in increasing dis-
order R. Inset: magnetization curves averaged over 30 RFC;
while this number is small, steps (which appear due to spanning
avalanches and stochastic distribution of Hsp) are visible.
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for R> Rc [and M�ðh0=jrj��Þ for R< Rc]. Here, m ¼
MRðHÞ �Mc, whereMc ¼ MRc

ðHcÞ is the critical magne-

tization, r ¼ ðR� RcÞ=R is a reduced disorder, and
h0 ¼ H �Hc � br is a reduced magnetic field ‘‘rotated’’
by parameter b in order to compensate the change of
Heff

c ðrÞ � Hc þ br with (small) r; here, Heff
c ðrÞ is the

effective critical field, i.e., the value of H at which the
susceptibility �RðHÞ ¼ dM=dH attains its maximum
value as a function of H for given R [6]. Finally, M�
are universal scaling functions of a single variable, while �
and � are the critical exponents that pertain to scaling
�M� jrj� of magnetization jump �M below Rc, and to
scaling m� h0� at Rc, respectively. Because of (1)

�RðHÞ � jrj����M0�ðh0=jrj��Þ; (2)

implying an analogous collapse of data onto derivatives
M0�ðxÞ ¼ dM�ðxÞ=dx of scaling functions M�ðxÞ.

To achieve collapsing, we have developed and used an
algorithm that minimizes the width w of the region that
contains collapsing data [11] without any assumption
about analytical form of the underlying scaling function;
for a similar algorithm, see [12].

In the main panel of Fig. 2 we present the collapse of
magnetization according to (1), and in the inset we give the
collapse of susceptibility according to (2); the values of
universal exponents � and ��, and nonuniversal quantities
Rc, Hc, Mc, and b are given in Table I. The collapses look
better than those obtained for d � 3 and in the mean-field
model—cf. [6,10]. For the integrated avalanche size dis-
tributions, the case is different.

The avalanche size distribution DR;HðSÞ for avalanches
triggered at the external magnetic field H scales with
avalanche size S (i.e., the number of spins flipped) as [2,6]

DR;HðSÞ � S��D�ðS�jrj; h0jrj���Þ; (3)

where D�ðXÞ are universal scaling functions. Therefore,

the integrated avalanche size distribution DðintÞ
R ðSÞ ¼Rþ1

�1 DR;HðSÞdH scales as

DðintÞ
R ðSÞ � S�ð�þ���Þ �DðintÞ

� ðS�jrjÞ; (4)

where � is the avalanche size exponent, while the cutoff
exponent � describes scaling of the largest avalanche size:

Smax � jrj�1=�.
For R ¼ Rc and for the infinite system, the expression

(4) reduces to a pure power law DðintÞ
R ðSÞ � S�ð�þ���Þ,

which is expected to display clear scaling regions for finite
systems and R � Rc as well. This is illustrated in the
bottom inset in Fig. 3, whence we see that only for suffi-
ciently big systems the scaling region, increasing with L,
can be distinguished from an unusually long initial region.

FIG. 2 (color online). Scaling collapse of magnetization M
(main panel) and susceptibility � curves (inset) for disorders
R ¼ 0:70–0:76 and system size L ¼ 131 072. The curves are
averages of 30 random field configurations for each R.
Collapsing parameters: � ¼ 0:15, �� ¼ 4:8, Rc ¼ 0:54,
Hc ¼ 1:275, Mc ¼ 0, and b ¼ 0:24; for both collapses, the
width (see [11]) is w ¼ 2:1� 10�2.

TABLE I. Universal critical exponents (top part) and nonun-
iversal scaling variables (bottom part) for 2D model. The quoted
errors are based on Monte Carlo estimation and statistical un-
certainties of the underlying data—see Chap. 15.6 in [13].

� �� � �þ ���

0:15� 0:04 4:8� 0:2 1:54� 0:05 2:02� 0:06
� � dþ �=� 	
0:10� 0:01 5:15� 0:20 2:04� 0:03 1:05� 0:06

Rc Hc Mc b
0:54� 0:02 1:275� 0:020 0:00� 0:01 0:24� 0:04

FIG. 3 (color online). Scaling collapse of integrated distribu-

tions DðintÞ
R ðSÞ of avalanche size S (symbols) for disorders R ¼

0:64–0:70 and system size L ¼ 65 536; w ¼ 4:5� 10�2. The
curves are averages of 600 random field configurations for each
R. The solid line represents the phenomenological curve (5).

Collapsing of binned distributions DðbinÞ
R ðSÞ for the same simu-

lation data is shown in the top inset; w ¼ 9:4� 10�3. In the

bottom inset, integrated distributions DðintÞ
R ðSÞ of avalanche size

S for system sizes L ¼ 8192� 131 072 are shown. The graphs
for L < 131 072 are shifted up for better visibility.
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Note that our largest lattice size (131072) far exceeds the
‘‘breakup length’’ Lb � 104 at Rc ¼ 0:54 [14].

For R> Rc, the expression (4) also implies that the

scaled quantities DðintÞ
R ðSÞS�þ���, plotted against S�r,

should collapse onto a single curve— �DðintÞ
þ ðS�rÞ. The

collapse is shown in Fig. 3 together with a phenomeno-
logical form [2,6]

�Dintþ ðXÞ ¼ e�0:608X1=� � ð0:193� 1:903X þ 6:432X2

� 8:929X3 þ 4:895X4Þ (5)

for the universal scaling function �DðintÞ
þ ðXÞ.

Although DðintÞ
R ðSÞ curves collapse well for large

avalanches, they show a noticeable branching for small
sizes. The branching disappears for the binned distribu-

tions DðbinÞ
R;H1;H2

ðSÞ ¼ RH2

H1
DR;HðSÞdH, provided the bins

(H1, H2) are properly chosen. Thus, for H1 ¼ Hc �
r���H0=2 and H2 ¼ Hc þ r���H0=2, where �H0 ¼
H2 �H1 is the bin width for r ¼ 0, binned distributions

DðbinÞ
R ðSÞ � DðbinÞ

R;H1;H2
ðSÞ scale like the integrated distribu-

tions, and DðbinÞ
R ðSÞS�þ��� data, plotted against S�r,

collapse—see the top inset in Fig. 3. The values of �,
and �þ ��� are given in Table I, together with the value
of � obtained by fitting DR;HðSÞ to the power-law

DR;HðSÞ � S��.

For nonequilibrium RFIM near the critical point, the
correlation function for avalanches at external field H
scales as [2,6]

GR;HðxÞ � 1

xd�2þ	
G�

�
x


ðr; h0Þ
�
; (6)

where x is the distance between spins flipped in the same
avalanche, 	 is the exponent called anomalous dimension,
G� are universal scaling functions, and 
 is the correlation
length. For h0 ¼ 0 the correlation length 
 diverges when
r ! 0. If power-law scaling applies, then 
ðr; h0Þ �
jrj��Y�ðh0=jrj���Þ for small h0, where Y� are the uni-
versal scaling functions. In this case


� jrj�� (7)

for h0 ¼ 0, which is corroborated by our numerical data—
see Fig. 4. The values of correlation length 
were obtained
from the fit of raw correlation data to the form

GR;HðxÞ � expð�x=
Þ=xd�2þ	; (8)

which also gives 	 � 1. The collapse of GR;HðxÞxd�2þ	

data against x=
 is shown in Fig. 5.
A further consequence of scaling (6) is that the integral

avalanche correlation function scales as [2,6]

GðintÞ
R ðxÞ � x�ðdþ�=�Þ �G�ðxjrj�Þ: (9)

The corresponding collapse of data, presented in the top
inset of Fig. 4, is obtained for the values of correlation

length exponent � and exponent combination dþ �=�
given in Table I.
So far we have not discussed how the model data scale

with system size L. For each system size L there exists an
effective critical disorder Reff

c ðLÞ below which spanning
avalanches appear [6]. The effective critical disorder
Reff
c ðLÞ is greater than Rc, and Reff

c ðLÞ ! Rc when
L ! 1. It is expected that for R ¼ Reff

c ðLÞ the correlation
length should be of the order of the system’s size, 
� L.
Hence, the power-law prediction (7), with reduced disorder
r ¼ ðR� RcÞ=R, implies

FIG. 4 (color online). Power-law divergence 
� jrj�� of cor-
relation length 
 with reduced disorder r for reduced magnetic
field h0 ¼ 0. In the bottom inset, the same data are shown against
R on a linear scale. Top inset: scaling collapse of correlation

function GðintÞ
R ðxÞ for disorders R ¼ 0:64–0:90 and system size

L ¼ 131 072; w ¼ 6:8� 106. The curves are averages of 30
random field configurations for each R.

FIG. 5 (color online). Scaling collapse of the correlation func-
tion GR;HðxÞ for the avalanches at reduced field h0 ¼ 0. The
collapse is obtained for 	 ¼ 1 and correlation lengths from
Fig. 4; w ¼ 4:6� 106. Inset: the same collapse on the lin-log
scale illustrates the applicability of approximation (8).
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½Reff
c ðLÞ � Rc�=Reff

c ðLÞ � L�1=�: (10)

As can be seen from Fig. 6, our data are in agreement with
this form, with the values of Rc and � which are quite close
to the ones obtained by other methods.

On the other hand, it seems that the other two types of
singularity discussed in [10] may be discarded, although
they mimic power law in a limited range of r. Thus, for the

Bray-Moore scaling (
� e~a=jR�Rcj2 , Rc � 0) experimental
data lie on a noticeably concave curve (top inset in Fig. 6);
the slope of its best-fit line, corresponding to the nonun-
iversal parameter ~a, manifests a systematic decrease as
bigger and bigger systems (L) are added to the analysis.

For the essential singularity (
� e
~b=jR�Rcj, Rc � 0:42),

which better agrees with our data, the shape of avalanche
size distribution binned around Hc (bottom inset) varies
smoothly around R� 0:42, but changes its curvature for
R ¼ 0:54.

In conclusion, we have demonstrated that the 2D non-
equilibrium zero-temperature random field Ising model
exhibits a critical behavior, which can be described by
power-law scaling near the critical point. Our assertion is
based on the results of numerical analysis of data collected
in extensive simulations of systems which were sufficiently
large to clearly display the critical behavior.
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FIG. 6 (color online). Effective critical disorder Reff
c ðLÞ

versus system size L (symbols) and the power-law predic-
tion ½Reff

c ðLÞ � Rc�=Reff
c ðLÞ � L�1=� (continuous line) with

Rc ¼ 0:54 and � ¼ 5:14. Top inset: Bray-Moore scaling 
�
e~a=jReff

c ðLÞ�Rcj2 , Rc � 0; �Reff
c ðLÞ ¼ 0:001 25. Bottom inset: size

distributions for R ¼ 0:38–0:55, L ¼ 65 536, and more than 600
random field configurations for each R.
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