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Unprecedented low-dispersion high-frequency acoustic excitations are observed in dense suspensions

of elastically hard colloids. The experimental phononic band structure for SiO2 particles with different

sizes and volume fractions is well represented by rigorous full-elastodynamic multiple-scattering

calculations. The slow phonons, which do not relate to particle resonances, are localized in the

surrounding liquid medium and stem from coherent multiple scattering that becomes strong in the

close-packing regime. Such rich phonon-matter interactions in nanostructures, being still unexplored, can

open new opportunities in phononics.
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In structured materials with spatial variation in their
elastic properties, i.e., density �, longitudinal and trans-
verse sound velocities, cl and ct, the propagation of acous-
tic waves can be distinctly different from the wave
propagation in the isotropic bulk material. The most promi-
nent paradigm is a phononic crystal that can exhibit, under
certain conditions, acoustic band gaps, i.e., regions of
frequency for which propagation of acoustic waves is
forbidden within the crystal. So far, two mechanisms are
reported for band gap opening in phononic crystals as
shown schematically in Fig. 1(a): (a) Bragg band gaps
for wave propagation vectors at an edge or at the center
of the Brillouin zone due to destructive interference be-
tween incident and scattered acoustic waves, when the
sound wavelengths commensurate the structure periodic-
ity. Audible sound is modified by meter-sized structures
[1], while sub-�m lattices interact with hypersonic (GHz)
frequencies [2]. (b) Hybridization gaps due to the anti-
crossing interaction between the extended acoustic band
and narrow bands originating from the resonant modes of
the individual building units [2–6]. These are analogous to
the well-known s-d hybridization gaps in the electron band
structure of transition metals [7]. Polymer-based periodic
structures such as 1D periodic stacks of alternating nano-
layers [8,9] and 2D triangular arrays of cylindrical holes
[10] exhibit only Bragg band gaps. In contrast, colloid-
based nanostructures, such as colloidal crystals, prove a
much more versatile system for engineering phonon dis-
persion due to both the rich chemistry of the individual
particles, which allows the facile tuning of the elastic
parameters over a wide range, as well as their ability to
self-assemble [11,12]. For example, a single hypersonic
Bragg band gap was realized in self-assembled face-
centered cubic (fcc) crystals of elastically soft (polymer)

colloids at a volume fraction � ¼ 0:74 [2] and relatively
low elastic impedance (Z ¼ �cl) contrast (�Z) between
the colloids and the surrounding matrix. More interest-
ingly, in such soft colloidal systems with larger �Z, the
second mechanism of a hybridization band gap, for which
structure periodicity is not a precondition [5], is activated
within the same frequency region. An increase in �Z
results in a gradual evolution of the known band gaps [2,5].
Herein we report on unprecedented collective hypersonic

excitations in phononic structures based on elastically hard
silica colloids. The band diagram, recorded by Brillouin
light scattering (BLS) at high volume fraction in an index-
matching liquid, is found to be qualitatively different from
that of softer (polymer-based) colloidal systems as a result
of a further boosted �Z. Full-elastodynamic calculations
ascribe the unexpected wave dispersion to the strong pho-
non multiple scattering, which becomes the dominant
mechanism at the highest volume fraction.
We investigate colloidal systems based on three species

of SiO2 spheres with diameter d ¼ 192, 354, and 632 nm
and low size polydispersity (< 5%) [11]. These were syn-
thesized by Stoeber process in ethanol/ammonia bearing
no stabilizing layer. The colloidal particles were trans-
ferred into an ethoxy-ethoxyethyl acrylate (SR256,
Sartomer) isorefractive liquid matrix at � � 0:35; i.e.,
multiple light scattering was strongly suppressed. The
colloids were pushed beyond the equilibrium colloidal
crystal (� � 0:54) to dense packed fcc polycrystalline
lattice by ultracentrifugation (7000 g) in standard NMR
tubes [13]. This was supported by static light scattering and
the opalescence of the samples (see supplemental material
[14]). Twinning in the fcc structure would not influence our
general conclusions. For comparison, an analogous struc-
ture based on soft poly(methyl methacrylate) (PMMA)
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spheres (d ¼ 360 nm), sterically stabilized with polyhy-
drostearic acid, was prepared in an isorefractive matrix.
The band diagrams were recorded by BLS [2], with the
probing wave vector q scanned by changing the scattering
angle �, i.e., q ¼ 4�n

� sin�2 , where nð¼ 1:44 for SR256Þ is
the refractive index and � ¼ 532 nm the laser wavelength.
At each q, BLS records the spectrum, Iðq;!Þ (angular
frequency ! ¼ 2�f), whose spectral shape is represented
by Lorentzian line shapes convoluted with the instrument
function as seen in the anti-Stokes side of Iðq;!Þ in
Fig. 1(b) (solid lines) for both colloidal systems. At the
same dimensionless wave number qd, the spectra are dis-
tinctly different. For SiO2=SR256 only one acoustic peak
(1) is found followed by a very weak signal (2) at the first
particle resonance frequency (with multipole order l ¼ 2 at
f ¼ 6 GHz). On the contrary, PMMA/decaline-tetraline
shows a clear splitting of the signal (10 þ 20) due to a
hybridization gap at the frequency of the corresponding
first resonance (l ¼ 2) [5]. The latter appears at a lower
frequency than in SiO2 due to the softer nature of the
PMMA particles.

Figure 1(c) displays the experimental dispersion relation
!ðqÞ in the polycrystalline colloidal suspensions of close-
packed SiO2 spheres with different diameters. The three
dispersion diagrams are plotted in reduced frequency
!d=cl, where cl is the sound velocity in the host liquid,
versus qd, so that the dispersion remains valid for any
sphere size. Indeed, all three experimental dispersions
follow the same reduced band diagram. At low frequencies
and low q’s, there is only one longitudinal acoustic phonon
branch [15]. Contrary to other studies on sintered SiO2

opals [16], transverse phonons are not observed since shear
waves are not supported in the absence of consolidation of
neighboring particles. In a phononic crystal, the bands are
repeated periodically if we add a reciprocal-lattice vector
G. In fact, the experimental dispersion at qd > 17 reveals
the presence of the first Bloch harmonic [dashed line in
Fig. 1(c)], supporting the polycrystalline structure of the
sample. It is shifted by qd � 8 in agreement with the
dimensionless shortest reciprocal-lattice distance Gmind.
Counterintuitively, the intensity of this mode at !ðqþ
GÞ in the BLS spectrum (not shown) is stronger than the
acoustic (first order) phonon !ðqÞ [17].
For comparison, Fig. 1(c) also displays the experimental

band structure of the PMMA colloidal suspension. The
polycrystalline suspension of hard SiO2 displays distinctly
different band diagrams from both poly- and single-
domain colloidal crystals of soft polymer spheres [2].
The coherence of the structure is manifested in the shape
of the band structure of the latter, and no Bragg band gap
(as found in single-domain opals [5]) is observed in multi-
domain crystals. In the case of close-packed SiO2, how-
ever, the dispersion is insensitive to the polycrystallinity, as
indicated by the virtually identical band diagram for a
single crystalline infiltrated silica opal in the accessible
(smaller) q range [14]. The lack of superposition for the
band diagrams of the two colloidal systems relates to the
evolution of the fundamental acoustic branch with qd. For
SiO2 colloids, it bends near an edge of the first Brillouin
zone exhibiting a low dispersion beyond qd ¼ 3:5. It
then continues at higher frequencies but shifted at larger
qd (� 6) values with respect to the extrapolation of the
low-frequency acoustic branch. The band diagram of the
suspension of the soft (PMMA) colloids is distinctly differ-
ent. The fundamental acoustic branch continues beyond
the hybridization gap at!d=cl � 3:5 (l ¼ 2) and the weak
localized mode at !d=cl � 6 (l ¼ 3). Thus the different
shape of the band diagram and the plateau about !d=cl �
3:5 are intrinsic features of the hard colloidal suspension.
The oscillations of the individual scatterers (particles)

play an important role in the wave propagation in colloidal
structures. A single spherical particle in vacuum exhibits
purely transverse (torsional) and mixed longitudinal-
transverse (spheroidal) vibrational eigenmodes [18–21].
When the particle is embedded in the liquid solvent, each
spheroidal eigenmode is coupled with the acoustic field in
the solvent and, consequently, energy leaks out of the
sphere. As a result, the eigenmode acquires a finite lifetime
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c

FIG. 1 (color online). (a) Schematic band structure in pho-
nonic crystals of elastic soft colloids [2,5] (BG, Bragg gap; HG,
hybridization gap). (b) Exemplary spectra for polycrystalline
colloidal suspensions of close-packed SiO2 spheres in SR256
and PMMA spheres in decaline-tetraline, of diameter d, at
qd � 3:7 [vertical arrow in band diagram (c)]. The solid lines
on the anti-Stokes side of the spectra show the fits of a double
Lorentzian. (c) Reduced phononic band diagram deduced from
BLS experiments on the two systems and three different d for
SiO2=SR256. For the largest d, the dashed line represents the
first Bloch harmonic intersecting the abscissa at qd�8. The
positions of the resonant lth multipole modes of the single SiO2

(solid arrows) and PMMA (dashed arrows) spheres immersed in
the corresponding liquid matrices are indicated on the right
margin.
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and from a bound state becomes a resonant mode. In the
colloidal structure, the resonant modes of neighboring
particles couple weakly with each other through the acous-
tic field in the liquid solvent, thus forms a band of collec-
tive propagating modes, which have a large amplitude
inside each particle. This band extends over a narrow
frequency region near the eigenfrequency of the corre-
sponding single-particle mode. Such narrow bands of reso-
nant modes—and consequent hybridization gaps—appear
in suspensions of soft-particle colloids [5]. Figure 1(c)
shows the three lower resonance frequencies (arrows) of
the PMMA particle in liquid; the lowest l ¼ 2 mode is
responsible for the first gap in the band diagram of this
system. For the hard SiO2 spheres, the resonance modes,
and hence the resulting narrow bands, are pushed to higher
frequencies,!d=cl > 9:5. The observed fundamental reso-
nance band, associated with quadrupole particle modes,
appears close to the corresponding single-particle reso-
nance at !d=cl � 10. The unexpected plateau at !d=cl �
3:5 of the dispersion diagram of the SiO2=SR256 system is
most likely the fingerprint of a narrow band, which cannot
be ascribed to any localized resonant mode of the individ-
ual particles. It is worth noting that similar narrow bands
have been encountered in the phononic band diagram of
dry SiO2 opals, but, so far, defied convincing full interpre-
tation [22].

The theoretical phononic band structure of the SiO2

colloidal crystals in SR256 matrix is rigorously computed
by the layer-multiple-scattering method [23]. The input
parameters for SiO2 and SR256, respectively, are � ¼
1900 and 1013 kg=m3, cl ¼ 4420 and 1420 m=s, ct ¼
2780 and 0 m=s. Using an angular-momentum cutoff
lmax ¼ 8 and considering 85 2D reciprocal-lattice vectors
in the relevant spherical-wave and plane-wave expansions,
respectively, ensures very good convergence of the results
(better than 1%). The calculated nondegenerate phononic
bands, which are the only acoustically active bands along
the [111] and [001] fcc directions [4], are shown in Fig. 2 in
the repeated zone scheme. It can be seen that the experi-
mental data nicely follow the principal longitudinal acous-
tic branch (1) and the narrow band (2). It is also worth
noting that no frequency gap is observed experimentally,
presumably because of the polycrystalline nature of the
samples; the gaps shown for [111] and [001] are not
omnidirectional as verified by detailed numerical calcula-
tions. The band structure of Fig. 2 originates from the
interaction between the principal acoustic branch and the
narrow band (2). The experimental data beyond the plateau
(qd > 6) follow higher frequency bands, which deviate
from the extrapolation of the low-frequency acoustic
branch because of strong band bending.

Experimentally, the narrow band (2) is observed only at
the close-packing ratio; it is absent at � � 0:35 and � �
0:54. This band might therefore originate from localized
torsional eigenmodes of the SiO2 particles that form a
narrow band of propagating Bloch modes. However, as
already mentioned, mere touching of the particles without

tangential interactions cannot allow propagation of a shear
displacement field. Moreover, the torsional eigenfrequen-
cies of an elastic sphere are too high [18]. The lowest
fundamental frequency is at !d=cl � 9:8, which is well
above the flat band (2). In another scenario, the band (2)
might stem from resonant modes of cavities formed be-
tween close-packed SiO2 spheres with liquid filling up the
empty spaces. Though the shape of these cavities is rather
complex, a rough estimate of the fundamental resonance
frequency can be made by assuming volume-filling spheri-

cal cavities with diameter dc ¼ ½ð1��Þ=��1=3d with
� ¼ 0:74. Applying the standing-wave condition dc ¼
�=2, we obtain !d=cl � 4:4, which is in good agreement
with the position of the flat band. However, these cavities
are not closed to justify application of the above standing-
wave condition, but rather form a continuous network. In
addition, the theoretical calculations (see Fig. 3) show that
the frequency of the narrow band (2) increases with de-
creasing �. This is in clear contrast to the opposite trend
anticipated on the basis of the fluid-cavity model.
In order to gain more insight into the formation of the

narrow band in question and the lack of superposition for
the two systems in Fig. 1(c), we carried out systematic
calculations by progressively increasing the diameter of
the SiO2 spheres, centered at the sites of a given fcc lattice
of lattice constant a in a SR256 matrix, from 0 (empty

lattice) to a0 ¼ a
ffiffiffi

2
p

=2 (close-packed spheres). In the
empty-lattice limit, the phonon dispersion diagram is that
of a homogeneous medium in the reduced-zone scheme
(Fig. 3). This is given by! ¼ cljqþGj, whereG ¼ 2�

a �
ðn1; n2; n3Þ are fcc reciprocal-lattice vectors. The diagram
with the lowest bands corresponding to the above G vec-
tors along the �-L direction, i.e., for q ¼ 2�

a ð�; �; �Þ, 0 �
� � 1=2, is shown in Fig. 3. The perturbation induced
when actual scatterers occupy the lattice sites removes
the high degeneracy of the empty-lattice bands. Each of

FIG. 2 (color online). Phononic band structure (only nonde-
generate bands are shown) of a fcc crystal of closely packed
SiO2 spheres in SR256 along its [111] and [001] directions. The
triangles, circles, and squares show the experimental results for
the corresponding samples in Fig. 1. The longitudinal acoustic
branch is indicated by (1) and the flat band by (2).
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the threefold degenerate branches of the dispersion dia-
gram (� ¼ 0) along �-L splits into one nondegenerate
(black solid lines) and one doubly degenerate (gray solid
lines) band. Interestingly, there are no additional bands
apart from those appearing in the empty-lattice dispersion
diagram (� ¼ 0). We note that similar dispersion diagrams
are obtained for the same lattice with ideally hard spheres,
which, by definition, have no resonant modes; the wave
field is expelled at any frequency from the interior of such
spheres.

As seen in Fig. 3, the nondegenerate flat band, indicated
by an arrow, splits off a threefold degenerate dispersion
branch of the empty lattice and is progressively shifted
down to lower frequencies with increasing the particle
diameter. Concurrently, its character changes from ex-
tended to more localized within fluid regions [24].
Anticrossing interaction, which takes place between bands
of the same symmetry, finally leads to the band diagrams
shown by the black and gray solid lines in Fig. 3; absence
of anticrossing interaction (bare Bragg scattering) would
lead to the dotted lines in Fig. 3 for finite �. Thus, the
formation and evolution of the flat band in the dense
suspension of hard colloids should be understood as a
multiple-scattering effect rather than a tight-binding-like
process from localized single-particle or single-cavity
modes. It is also worth noting that the presence of the flat
band near a Bragg point leads to sizable gaps due to the
superposition of Bragg scattering and anticrossing interac-
tion, as well as to large band bending as a result of strong
band mixing (see, e.g., at !a0=cl � 6 for � ¼ 0:54 and

!a0=cl � 4 for � ¼ 0:74 in Fig. 3). Otherwise, the Bragg
gaps are relatively small and not discernible in Fig. 3
(dotted lines).
The phonon dispersion diagram of dense SiO2 colloids

exhibits novel and unexpected features in view of the
current state of the art based on elastically soft colloids.
Full-elastodynamic calculations with no adjustable pa-
rameter represent well the experimental band structure
and provide consistent interpretation of the underlying
mechanisms distinct in the present system. Apart from
the extended effective-medium band and narrow bands
stemming from localized particle resonances at relatively
high frequencies, we identified additional almost disper-
sionless collective modes at lower frequencies. These
originate from strong coherent multiple scattering and are
localized in regions of the liquid matrix. Strong mode
hybridization leads to large band bending while directional
gaps arise from the superposition of Bragg scattering and
anticrossing interaction. Therefore, dense suspensions of
elastically hard colloids exhibit unique features that enrich
the opportunities for phononic band engineering, control-
ling heat propagation, and tailoring the phonon-matter
interaction in nanostructures.
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FIG. 3. Phononic band structure of SiO2=SR256 fcc crystals
with � ¼ 0, � ¼ 0:54, and � ¼ 0:74 along their [111] (�-L)
direction. The flat band of interest is indicated by an arrow. For
� ¼ 0, the solid and dashed lines denote nondegenerate and
threefold degenerate bands, respectively, corresponding to
reciprocal-lattice vectors (in units 2�=a): (1): ð0; 0; 0Þ; (10):
ð�1;�1;�1Þ; (100): ð1; 1; 1Þ; (2): ð1;�1;�1Þ, ð�1; 1;�1Þ,
ð�1;�1; 1Þ; (3): ð0; 0;�2Þ, ð0;�2; 0Þ, ð�2;0;0Þ; (4): ð�1;1;1Þ,
ð1;�1;1Þ, ð1;1;�1Þ. For � ¼ 0:54 and � ¼ 0:74, the black and
gray solid lines denote the actual nondegenerate and doubly
degenerate bands, respectively. Dotted lines show schematically
the nondegenerate bands that would be in the absence of anti-
crossing interaction, with the corresponding number denoting
their origin in the empty-lattice (� ¼ 0) diagram.
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