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Nonlinear gyrokinetic simulations are conducted to investigate turbulent transport in tokamak plasmas

with rotational shear. At sufficiently large flow shears, linear instabilities are suppressed, but transiently

growing modes drive subcritical turbulence whose amplitude increases with flow shear. This leads to a

local minimum in the heat flux, indicating an optimal E�B shear value for plasma confinement. Local

maxima in the momentum fluxes are observed, implying the possibility of bifurcations in the E� B shear.

The critical temperature gradient for the onset of turbulence increases with flow shear at low flow shears;

at higher flow shears, the dependence of heat flux on temperature gradient becomes less stiff. The

turbulent Prandtl number is found to be largely independent of temperature and flow gradients, with a

value close to unity.
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Introduction.—Experimental measurements in magnetic
confinement fusion devices indicate that sheared mean
E�B flows can significantly reduce and sometimes fully
suppress turbulent particle, momentum, and heat fluxes
[1,2]. Since these fluxes determine mean plasma density
and temperature profiles, their reduction leads to a local
increase in the profile gradients. This increase can be
dramatic: transport barriers in both the plasma core and
edge have been measured with radial extents of only tens of
ion Larmor radii [3]. The associated increase in core
density and temperature results in increased fusion power.
Thus, understanding how shear flow layers develop and
what effect they have on turbulent fluxes is both physically
interesting and practically useful.

This Letter reports a numerical study of the influence of
sheared toroidal rotation on turbulent heat and momentum
transport in tokamak plasmas. Two main effects of sheared
rotation were identified in previous numerical work [4–9]:
suppression of turbulent transport by shear in the perpen-
dicular (to the mean magnetic field) velocity and linear
destabilization due to the parallel velocity gradient (PVG).
While the former observation indicates that a finite flow
shear improves plasma confinement, the latter raises the
question of whether more shear is always beneficial. Prior
simulation results with low to moderate flow shear indi-
cated that the PVG linear growth rate increases monotoni-
cally with flow shear [6,9]. Below we report that the
PVG-driven linear instability [10] is stabilized at larger
flow shear values, leading to a dip in the heat flux.
However, transiently growing modes driven by the PVG
eventually give rise to subcritical turbulence for suffi-
ciently large flow shear. The fluxes associated with this
subcritical turbulence increase with flow shear, leading to
an optimal value of flow shear for each temperature gra-
dient comparable to that found in many experimental
transport barriers [11].

In the absence of flow shear, a small increase in tem-
perature gradient leads to a large increase in heat flux
(‘‘stiff transport’’). Recent experimental evidence [12]
suggests that flow shear may reduce this sensitivity in
configurations with low magnetic shear. Our results indi-
cate that at low flow shears, both the critical temperature
gradient for the onset of turbulence and the stiffness in-
crease. At high flow shears, the opposite behavior is ob-
served (stiffness and critical temperature gradient both
decrease).
Model.—A closed set of fluid conservation equations

determines the evolution of mean plasma density, flow,
and pressure in tokamak plasmas [13,14]. The fluxes ap-
pearing in these equations are typically dominated by
turbulent contributions, which we calculate here. We re-
strict our attention to electrostatic fluctuations and assume
a modified Boltzmann response [15] for the electron dis-
tribution. The particle flux then vanishes, and the radial
components of the turbulent heat flux of species s, Qs, and
toroidal angular momentum flux, �, are
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with R the major radius of the torus, c a flux-surface label,
� the toroidal angle, ms the particle mass, v its velocity in
the mean flow frame, vE the fluctuating E�B drift veloc-
ity, �fs the deviation of the distribution function from a
local Maxwellian, and the overline a spatial average over a
thin annulus encompassing a flux surface.
The distribution function �fs is calculated by solving

the standard �f gyrokinetic equation in the limit where the
plasma flow speed, u, is ordered comparable to the ion
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thermal speed, vth �
ffiffiffiffiffiffiffiffiffiffi
T=m

p
, with T the species tempera-

ture [14,16]. In this ‘‘high-flow’’ regime, the flow velocity
is constrained to be u ¼ R2!ðc Þr�, where ! is the rota-
tional frequency [17]. To focus on the effect of flow shear,
we consider the limit in which the flow is small, but the
flow shear is large (comparable to the fluctuation fre-
quency). We thus ignore effects arising from the centrifu-
gal and Coriolis forces. Using (R, E, �, #) coordinates,
with R the guiding center position, E ¼ mv2=2, � ¼
mv2

?=2B, and # the gyro angle, the gyrokinetic equation is
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with d=dt ¼ @=@tþ u � r, e the particle charge, ’ the
electrostatic potential, vE ¼ ðc=B2ÞB�r’, F0 a
Maxwellian distribution in the frame rotating with fre-
quency !, C the collision operator, B the magnetic field

strength, B� its toroidal component, vB ¼ b̂=�� ðv2
kb̂ �

rb̂þ v2
?rB=2BÞ, � the Larmor frequency, b̂ ¼ B=B,

and h:i the average over # at fixed (R, E, �).
Equation (3) is solved in the rotating reference frame

using the local, nonlinear gyrokinetic code GS2 [18]. Flow
shear enters the calculation through the convective time
derivative, which depends on the shear in the perpendicular
flow, and the d!=dc drive term in Eq. (3), which accounts
for the shear in the parallel flow. Because the flow is purely
toroidal, these two components are related by the geomet-
ric factor (qR0=r) [9]. The flow shear is thus controlled by

a single parameter, �E ¼ ðc =qÞðd!=dc ÞR0=
ffiffiffi
2

p
vth ¼

ðM=qÞðd ln!=d lnrÞ, with q the safety factor, R0 the major
radius at the center of the flux surface, and r the half-
diameter of the flux surface (both measured at the height of
the magnetic axis).

We study a system whose magnetic geometry corre-
sponds to the widely used Cyclone base case [19] (un-
shifted, circular flux surface with q ¼ 1:4, magnetic shear
ŝ ¼ d lnq=d lnr ¼ 0:8, r=R0 ¼ 0:18, and R0=Ln ¼ 2:2,
where L�1

n ¼ �d lnn=dr). The shearing rate, �E, and the
normalized inverse temperature gradient scale length, � �
R0=LT , were varied over a wide range of values in a series
of linear and nonlinear simulations.

Linear stability.—In tokamaks, mean E� B shear ad-
vects fluctuations through regions where the magnetic field
line curvature alternates between stabilizing and destabi-
lizing. The resulting modes, called Floquet modes, exhibit
periodic oscillations superposed on mean growth or decay
(the time domain analog of Bloch states in periodic media).
The mean linear growth rates, �, obtained from our simu-
lations are given in Fig. 1. We find that � decreases
discontinuously when �E increases from zero [20] before
increasing to a local maximum and subsequently decreas-
ing to zero. For �E * 0:25, the system is linearly stable

unless both the ion temperature gradient and the PVG are
nonzero (cf. [6–9]). The system becomes linearly stable for
larger values of �E, with the critical �E for stability, �Ec,
increasing approximately linearly with �. Beyond �Ec,
there are no linearly unstable modes, which is similar to
the result from fluid theory in a slab [21]. While �Ec is
larger than the �E values found for standard operating
conditions in many tokamaks, it is comparable to or
smaller than the �E values observed in many transport
barriers [11].
Heat flux.—The turbulent heat flux calculated from non-

linear simulations is given in Fig. 2. For all � values, the
heat flux follows the same trend as growth rates when
�E < �Ec. For �E > �Ec, nonlinear simulations initialized
with low-amplitude noise develop no turbulent transport.
However, for finite initial fluctuation amplitudes, the tur-
bulence does not necessarily decay away: for sufficiently
large values of � and initial amplitude, the flux reaches
steady state values in excess of those found for �E just
below �Ec [22]. The flux then increases monotonically
with �E. For the range of �E considered here, the heat
flux associated with a given temperature gradient is thus
minimized at a finite value of flow shear.
Subcritical turbulence.—Because the turbulence is

present in the absence of linear instability, we refer to it
as subcritical. When �E > �Ec, our linear simulations
exhibit transient growth, with order unity increases in the
initial fluctuation amplitudes over times of several R0=vth

before subsequent decay (Fig. 3). The duration of growth
decreases with increasing �E, but the transient growth rate
increases so that the amplification factor of the initial
perturbation amplitude grows with flow shear, consistent
with analytic theory [21]. This provides an energy source
for the turbulence, which can be maintained by the non-
linearity through redistribution of energy among other
modes. As seen in Fig. 2, the �E beyond which subcritical
turbulence is maintained depends on � (and likely on
magnetic geometry as well).
The phenomenon reported here is physically distinct

from the subcritical turbulence observed previously
(cf. [6]), which is sustained by the transient growth of

FIG. 1 (color online). Average linear growth rates (normalized
by R0=vth) vs flow shear. Inset: Critical flow shear vs R0=LT .
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Floquet oscillations as modes are advected through the
unfavorable curvature region by the E�B flow. The sub-
critical turbulence presented here is driven by the PVG
term in Eq. (3) (d!=dc term on the right-hand side), as the
turbulence disappears when the PVG is artificially set to
zero; thus, it is present even for a straight magnetic field.
This is physically similar to subcritical turbulence in
Couette and Poiseuille flows, where strong flows drive

turbulence in the absence of linear (and nonlinear) insta-
bilities [23].
Momentum flux.—The momentum flux also mimics the

linear growth rate, except near �E ¼ 0 [24]. This is under-
stood by expressing the momentum flux as � ¼
�mivthðqR0=rÞ�ið�; �EÞ�E, where �i is the turbulent vis-
cosity. For small �E, �i is approximately constant and� /
�E. For larger �E, turbulent amplitudes drop rapidly, so �
decreases, resulting in the local maxima seen in Fig. 2. This
suppression of � is due to linear stabilization as �E

approaches �Ec from below. The momentum flux increases
monotonically when �E > �Ec due to subcritical turbu-
lence. The maxima in � may lead to a bifurcation in
flow shear, discussed in the Conclusions.
Prandtl number.—The turbulent Prandtl number can be

calculated from the values of Qi and �. It is defined as
Pr ¼ �i=�i, where the turbulent thermal diffusivity, �i, is
given by Qi ¼ ��idTi=dr. Figure 4 shows that Pr is
approximately independent of � and only has strong de-
pendence on �E for small values of �E [25]. This is despite
the fact that both �i and �i individually have strong de-
pendence on � and �E. For �E * 0:4 the Prandtl number is
close to unity, in good agreement with experimental mea-
surements at low Mach numbers [27].
Stiff transport.—A serious impediment to confinement is

the strong sensitivity of the heat flux to small changes in �.
This stiffness of the transport makes it difficult to increase
�, and therefore the core temperature, beyond the critical
value, �c, at which turbulence is excited. Recent experi-
mental results indicate that the stiffness, @Qi=@�, may be
reduced at low magnetic shear and large values of �E [12].
For the Cyclone base case considered here (ŝ ¼ 0:8), we
find a complicated dependence of stiffness on flow shear,
shown in Fig. 5. At low values of �E ( & 0:3), the critical �
shifts to higher values, but the stiffness increases. For
�=�E ! 1, the heat flux tends to the curve corresponding
to �E ¼ 0; since �c increases with �E, the average value of
@Qi=@� increases with �E.

FIG. 3 (color online). Heat flux versus time obtained from
linear simulations for R0=LT ¼ 8:75 and several �E values at
which subcritical turbulence is observed. Inset: Transient ampli-
fication factor, A, and growth time, �, versus �E.

FIG. 2 (color online). Turbulent heat (top) and toroidal angular
momentum (bottom) fluxes vs flow shear for a range of R0=LT

values. For �E > �Ec (see Fig. 1), the turbulence is subcritical,
sustained by transiently growing modes.

FIG. 4 (color online). Turbulent Prandtl number as a function
of flow shear for a range of R0=LT values. Unfilled points
correspond to linearly stable flow shear values. Zero Pr points
represent fully suppressed turbulence.
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For 0:3 & �E < �Ec, both �c and the profile stiffness
decrease. This is a result of the change in nature of the
linear instability, which is now driven by the PVG. The
relaxation of stiffness is modest, and it only occurs for �
near �c. When �E > �Ec, �c initially shifts upwards with
increasing �E, and stiffness increases for � near �c.
However, for even larger �E, both the stiffness and �c

decrease. This is to be expected, as the subcritical turbu-
lence is driven by the velocity, not temperature, gradient
and thus has a weaker dependence on �. Finally, Fig. 5
shows that, for the parameters considered here, �E ¼ 1 is
the overall optimal value of flow shear, for which any given
input Q results in the largest possible �.

Conclusions.—We have shown that PVG-driven turbu-
lence exists at large flow shears, but only if the initial
fluctuation amplitudes are sufficiently large. This has a
number of potentially important implications. First, it in-
dicates that linear stability analysis is insufficient to deter-
mine critical gradients in rotating plasmas. It also implies
the existence of an optimal flow shear for confinement
corresponding to each temperature gradient. Furthermore,
it shows that the system can undergo hysteresis: an equi-
librium state with large flow shear and temperature gra-
dient (e.g., �E ¼ 1 and R0=LT ¼ 10) has large turbulent
fluxes if the temperature gradient is obtained at low flow
shear, where fluctuations grow due to linear instability and
are maintained by subcritical turbulence drive when flow
shear is increased. If a large flow shear is obtained before
increasing the temperature gradient, then the initial fluc-
tuation amplitudes will not be large enough to achieve
subcritical turbulence. In experiment a certain heat flux is
maintained via external sources, so the only way to main-
tain the quiescent solution is for the temperature gradient to
get sufficiently large that the heat flux is collisional.

The existence of local maxima of the toroidal angular
momentum flux provides the potential for bifurcations in
�E [28] and corresponding bifurcations in temperature
gradient. However, a detailed transport analysis is neces-

sary to study such a bifurcation for experimentally relevant
conditions [29]. Finally, because the ratio of the E�B
suppression and PVG drive term is proportional to (qR0=r)
[9], our results, which should be qualitatively robust, may
undergo considerable quantitative variation with changes
in magnetic configuration.
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