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We prove that interscale transfer of kinetic energy in compressible turbulence is dominated by local

interactions. In particular, our results preclude direct transfer of kinetic energy from large-scales to

dissipation scales, such as into shocks, in high Reynolds number turbulence as is commonly believed. Our

assumptions on the scaling of structure functions are weak and enjoy compelling empirical support. Under

a stronger assumption on pressure dilatation cospectrum, we show that mean kinetic and internal energy

budgets statistically decouple beyond a transitional conversion range. Our analysis establishes the

existence of an ensuing inertial range over which mean subgrid scale kinetic energy flux becomes

constant, independent of scale. Over this inertial range, mean kinetic energy cascades locally and in a

conservative fashion despite not being an invariant.
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Turbulence is a phenomenon that pervades most
liquid, gas, and plasma flows in engineering and nature,
ranging from high-speed engines, nuclear fusion power
reactors, and spacecraft reentry, to star formation in mo-
lecular clouds, and supernovae. While the traditional
Richardson-Kolmogorov-Onsager picture is a successful
theory of incompressible turbulence, all aforementioned
systems are characterized by significant compressibility
effects. We will lay a rigorous framework in [1] to study
scale coupling in compressible flows and to analyze trans-
fer of kinetic energy between different scales. The purpose
of this Letter is to explore if such transfer of energy takes
place through a cascade process and whether the cascade is
scale local.

Kolmogorov’s 1941 theory of incompressible turbulence
makes the fundamental assumption of a scale-local cascade
process in which modes all of a comparable scale �‘
participate predominantly in the transfer of energy across
scale ‘. If, furthermore, the cascade steps are chaotic
processes then it is expected that any ‘‘memory’’ of
large-scale features of the system, such as geometry and
large-scale statistics, or the specifics of microscopic dis-
sipation, will be ‘‘forgotten.’’ This gives rise to an inertial
scale-range over which turbulent fluctuations have univer-
sal statistics and the flow evolves under its own internal
dynamics without direct communication with the largest
or smallest scales in the system.

Therefore, scale locality of the cascade is crucial to
justify the existence of universal statistics and to warrant
the concept of an inertial range. It is, furthermore, neces-
sary for the physical foundation of large-eddy simulation
(LES) modeling of turbulence. It motivates the belief that
models of subscale terms in the equations for large scales
can be of general utility, independent of the particulars of
turbulent flows under study. While scale locality in incom-
pressible turbulence stands on firm theoretical [2,3] and

numerical [4,5] grounds, no similar results exist for com-
pressible turbulence. In fact, there is a widespread belief
especially common in the astrophysical literature which
maintains that a ‘‘finite portion’’ of energy at a given scale
must be dissipated directly into shocks through nonlocal
transfer in scale (see, for example, [6]). Moreover, the idea
of a cascade itself is without physical basis since kinetic
energy is not a global invariant of the inviscid dynamics.
Hence, the notion of an inertial cascade-range in compress-
ible turbulence remains tenuous and unsubstantiated.
In this Letter, we prove under modest assumptions that

transfer of kinetic energy is indeed local in scale. Under a
stronger assumption, we will further show that kinetic
energy cascades conservatively despite not being an invari-
ant. We reach these results by a direct analysis of the
compressible Navier Stokes equations, without use of
any closure approximation. The equations are those of
continuity and momentum:

@t�þ r � ð�uÞ ¼ 0;

@tð�uÞþr � ð�uuÞ¼�rPþ�r �
�
ruþ1

3
r �uI

�
þ�f;

and either internal or total energy, supplemented with an
equation of state for the fluid. Here, f is an external
acceleration field stirring the fluid, and we have assumed
a constant dynamic viscosity, �.
Our analysis is based on a coarse-graining (or filtering)

approach expounded in [1], in which we observe that any
scale decomposition aimed at studying inertial-range dy-
namics must satisfy an inviscid criterion; i.e., it must
guarantee that viscous momentum diffusion and kinetic
energy dissipation are negligible at large scales. We
prove in [1] that a Favre decomposition meets such a
requirement. Using classically filtered fields, �a‘ðxÞ �R
d3rG‘ðrÞaðxþ rÞ, with kernel G‘ðrÞ ¼ ‘�3Gðr=‘Þ that
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is smooth and decays sufficiently rapidly for large r, a
Favre filtered field is weighted by density as ~a‘ðxÞ �
�a‘ðxÞ= ��‘ðxÞ. In what follows, we take the liberty of
dropping subscript ‘. From coarse-grained continuity and
momentum equations, we can write down a large-scale
kinetic energy (KE) budget,

@t�
j~uj2
2

þ r � J‘ ¼ ��‘ ��‘ þ �P‘r � �u‘ �D‘ þ �inj:

The KE budget describes instantaneous kinetic energy
evolution at every point x in the flow and at scales >‘,
for arbitrary ‘. Our approach, therefore, allows the simul-
taneous resolution of dynamics both in scale and in space,
and admits intuitive physical interpretation of all terms.
Here J‘ðxÞ is spatial transport of large-scale kinetic energy,
� �Pr � �u is large-scale pressure dilatation, D‘ðxÞ is vis-
cous dissipation acting on scales >‘, and �injðxÞ is the
energy injected due to external stirring (see [1] for details).
We prove in [1] that D‘ðxÞ is negligible at scales ‘ � ‘�,

where ‘� denotes the dissipation scale. We have also

shown that mean kinetic energy injection can be localized
to the largest scales L � ‘ by proper stirring. Over an
intermediate scale range L � ‘ � ‘�, the only relevant

terms in the large-scale KE budget are inertial processes.
The subgrid scale (SGS) flux terms are defined as

�‘ðxÞ ¼ � ��@j~ui~�ðui; ujÞ; �‘ðxÞ ¼ 1

�
@j �P ��ð�; ujÞ;

and act as sinks in the large-scale KE budget, transferring
large-scale kinetic energy to scales<‘. Deformation work,
�‘, is due to large-scale strain, r~u‘, acting against turbu-

lent stress, ��‘~�‘ðu;uÞ ¼ ��ð gðuuÞ‘ � ~u‘~u‘Þ, while baro-
pycnal work, �‘, is due to large-scale pressure-gradient
force, r �P‘= ��‘, acting against turbulent mass flux, ��‘ð�;uÞ
(see [1] for a more detailed discussion of the physics). We

employ the notation ��‘ðf; gÞ � ðfgÞ‘ � �f‘ �g‘ for 2nd order
central moments of fields fðxÞ, gðxÞ [7].

There are three facts crucial for proving scale locality of
interscale transfer. First is the observation that deformation
work,�‘, and baropycnal work,�‘, represent the only two
processes capable of direct transfer of kinetic energy
across scales. Pressure dilatation, � �P‘r � �u‘, does not
contain any modes at scales <‘ and does not vanish in
the absence of subscale fluctuations. It, therefore, cannot
participate in transferring kinetic energy directly across
scales and only contributes to conversion of large-scale
kinetic energy into internal energy. This observation allows
us to circumvent analyzing the internal energy budget
which does not couple to large-scale kinetic energy via
viscous dynamics, as we prove in [1].

The remaining two parts of our proof build upon pre-
vious studies in incompressible hydrodynamic [3] and
magnetohydrodynamic [8] turbulence, with some technical
modifications. The second ingredient we use is the fact
that SGS kinetic energy flux across ‘, �‘ þ�‘, depends

on the fields only through their increments, �fðx; rÞ ¼
fðxþ rÞ � fðxÞ, for separation distances jrj< ‘ (or
some moderate multiple of ‘) and does not depend on
the absolute field fðxÞ. Baropycnal work, �‘, can be ex-
pressed in terms of increments by noting that gradient
fields and central moments are related to increments as

r �f‘ ¼ O½�fð‘Þ=‘�; f0‘ ¼ O½�fð‘Þ�;
��‘ðf; gÞ ¼ O½�fð‘Þ�gð‘Þ�; (1)

where symbolO stands for ‘‘same order-of-magnitude as,’’
and f0‘ ¼ f� �f‘ is the fine-scale field. For rigorous de-

tails, see [3,9]. In order to express deformation work, �‘,
in terms of increments, we need the following identities
which are straightforward to verify:

r ~u ¼ r �uþ ���1r ��ð�;uÞ � ���2 ��ð�;uÞr ��;

~�ðu;uÞ ¼ ��ðu;uÞ þ ��ð�;u;uÞ= ��� ��ð�;uÞ ��ð�;uÞ= ��2:

We are finally able to express �‘ in terms of increments
using (1) and two additional relations,

r ��‘ðf; gÞ ¼ O½�fð‘Þ�gð‘Þ=‘�;
��‘ðf; g; hÞ ¼ O½�fð‘Þ�gð‘Þ�hð‘Þ�; (2)

whose rigorous details are in our longer work [9]. The

relation of 3rd order central moments, ��ðf; g; hÞ �
ðfghÞ‘ � �f‘ ��‘ðg; hÞ � �g‘ ��‘ðf; hÞ � �h‘ ��‘ðf; gÞ � �f‘ �g‘ �h‘,
to increments is unpublished and due to Eyink [10].
Since �‘ and �‘ can be expressed in terms of velocity,

pressure, and density increments, it thus becomes sufficient
to show that these increments themselves are scale-local.
To establish this, we need the third requirement crucial for
locality—that scaling properties of structure functions are
constrained by

k�uðrÞkp � urmsApðr=LÞ�u
p ; 0<�u

p < 1; (3)

k�PðrÞkp � PrmsBpðr=LÞ�P
p ; �P

p < 1; (4)

k��ðrÞkp � �rmsCpðr=LÞ��
p ; 0<��

p (5)

for some dimensionless constants Ap, Bp, and Cp. The

root-mean-square of a field fðxÞ is denoted by frms �
hf2i1=2, where h. . .i is a space average. Here, the pth power
of an Lp norm k � kpp ¼ hj � jpi is just the traditional

structure function. For example, �u
p ¼ 1=3 within

Kolmogorov’s 1941 theory. We remark that condition (5)
on the scaling of density increments is only an upper
bound. It only stipulates that the intensity of density fluc-
tuations decays at smaller scales, which is a very mild
requirement and is readily satisfied in incompressible or
nearly incompressible flows. Heuristically, assumptions
(3)–(5) characterize the roughness of fields: �f < 1
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specifies that the field fðxÞ is ‘‘rough enough’’, while
�f > 0 states that fðxÞ is ‘‘smooth enough.’’

Under conditions (3)–(5), proving scale locality of the
SGS flux becomes simple and follows directly from scale-
locality of increments [3]. For example, the contribution to
any increment �fð‘Þ from scales � � ‘ is represented by
� �f�ð‘Þ. Here, fðxÞ can denote either velocity or pressure
field. Since the low-pass filtered field �f�ðxÞ is smooth, its
increment may be estimated by Taylor expansion, and (1)
and (3) or (4), as

k� �f�ð‘Þkp ’ k‘ � ðr �f�Þkp ¼ O

��
‘

�

�
1��f

p
�
; (6)

and this is negligible for � � ‘ as long as �f
p < 1: The

notation Oð. . .Þ denotes a big-O upper bound. On the other
hand, the contribution to any increment �fð‘Þ from scales
� � ‘ is represented by �f0�ð‘Þ. Here, fðxÞ can denote

either velocity or density field. Since f0� ¼ O½fðxþ �Þ �
fðxÞ� from (1), scaling conditions (3) or (5) imply

k�f0�ð‘Þkp � 2kf0�kp ¼ O

��
�

‘

�
�f
p
�
; (7)

and this is negligible for � 	 ‘ as long as �f
p > 0. For

more details and for the careful proofs of these statements,
see [3] and our longer work [9].

Notice that, unlike for the velocity and pressure fields,
we do not stipulate that �ðxÞ be ‘‘rough enough.’’
Contributions to the flux across scale ‘ from the largest
density scales L � ‘ need not be negligible, yet the flux
can still be scale local. The underlying physical reason is
simple; an energy flux across scale ‘ at a point x will
depend on the mass in a ball of radius ‘ around x. Mass
is proportional to average density, ��‘ðxÞ, in the ball which
is dominated by large scales: ��‘ðxÞ ¼ O½ ��LðxÞ� ¼
O½�rms�. Furthermore, we do not require that the pressure
field be ‘‘smooth enough’’ even though we expect �P

p > 0.

This is because pressure only appears as a large-scale
pressure-gradient in �‘, with no contributions from scales
� 	 ‘.

The ultimate source of scaling properties (3)–(5) is
empirical evidence from numerical simulations, experi-
ments, and astronomical observations. Several independent
numerical studies of compressible turbulence at supersonic
turbulent Mach numbers such as [11–13] report power-law
scaling exponents well within our required constraints,
0<�

�
p and 0<�u

p < 1 for 1 � p � 6. Alongside

numerical evidence, astronomical observations by [14]
show that �

�
2 ¼: 0:3, and measurements from molecular

clouds by [15,16] also yield 0<�u
p < 1 for 1 � p � 6.

Under an additional assumption concerning the cospec-
trum of pressure dilatation, which is, albeit reasonable, not
as weak as scaling conditions (3)–(5), our proof of a scale-
local SGS flux implies a scale-local conservative cascade
of mean kinetic energy despite the latter not being an

invariant. The requirement on pressure dilatation cospec-

trum, EPDðkÞ � P
k�0:5<jkj<kþ0:5 � P̂ðkÞ dr � uð�kÞ, is that

it decays fast enough at large k,

jEPDðkÞj � CurmsPrmsðkLÞ��; � > 1: (8)

Here, C is a dimensionless constant and L is an integral
scale. In the limit of large Reynolds number, assumption
(8) implies that mean pressure dilatation, PDð‘Þ �
�h �P‘r � �u‘i, converges to a finite constant, � � �hPr �
ui, and becomes independent of ‘. In other words, we have
for wave number K 
 ‘�1,

lim
‘!0

PDð‘Þ ¼ lim
K!1

X
0<k<K

EPDðkÞ ¼ �: (9)

We remark that condition (8) is sufficient but not necessary
for the convergence of PDð‘Þ in the limit of ‘ ! 0. The
series

P
k<KE

PDðkÞ can converge with K ! 1 at a rate
faster than what is implied by assumption (8) due to
indefiniteness in the sign of EPDðkÞ.
If mean pressure dilatation saturates as in (9), then this

would imply that its role is to exchange large-scale mean
kinetic and internal energy over a transitional conversion
scale-range. At smaller scales beyond the conversion
range, mean kinetic and internal energy budgets statisti-
cally decouple. In other words, taking ‘� ! 0 first, then

‘ ! 0, steady-state mean kinetic energy budget becomes,

h�‘ þ�‘i ¼ h�inji � �: (10)

We stress that such a decoupling is statistical and does not
imply that small scales evolve according to incompressible
dynamics. Small scale compression and rarefaction can
still take place pointwise, however, they yield a vanishing
contribution to the space average.
We denote the largest scale at which such statistical

decoupling occurs by ‘c. It may be defined, for instance,
as ‘c � P

kk
�1EPDðkÞ=PkE

PDðkÞ. We expect ‘c to depend
on the scale at which an external compressive forcing is
applied. It may also be a decreasing function of Mach
number and/or the ratio of compressive-to-solenoidal com-
ponents of the velocity field. Over the ensuing scale range,
‘c > ‘ � ‘�, net pressure dilatation does not play a role,

and if, furthermore, h�inji in (10) is localized to the largest
scales as shown in [1], then h�‘ þ�‘i will be a constant,
independent of scale ‘.
A constant SGS flux implies that mean kinetic energy

cascades conservatively to smaller scales, despite not being
an invariant of the governing dynamics. This is one of the
main conclusions of this Letter. In particular, kinetic en-
ergy can only reach dissipation scales via the SGS flux,
�‘ þ�‘, through a scale-local cascade process. We are
therefore justified in calling scale-range ‘c > ‘ � ‘� the

inertial range of compressible turbulence.
Needless to say, the scaling of pressure dilatation co-

spectrum is easily measurable from numerical simulations.
We note that condition (8) does not require a power-law
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scaling—only that EPDðkÞ decays at a rate faster than
�k�1. It is not at all trivial why one should expect PDð‘Þ ¼
�h �P‘r � �u‘i to converge at small scales. How can this be
reconciled with the expectation that compression, as quan-
tified by r � u, would get more intense at smaller scales?
Indeed, [17] observed numerically that ðr � uÞrms is an
increasing function of Reynolds number. The key point
here is that our assumption (8) concerns spatially averaged
pressure dilatation. It is true thatr � uðxÞ, being a gradient,
derives most of its contribution from the smallest scales
in the flow. Since Pr � u is not sign definite, however,
major cancellations can occur when space averaging.
The situation is very similar to helicity cospectrum in
incompressible turbulence, where the pointwise vorticity,
!ðxÞ ¼ r� u, can also become unbounded in the limit of
infinite Reynolds number. Yet, numerical evidence shows
that hu �!i remains finite and the helicity cospectrum
decays at a rate �k�n, with n 
 5=3> 1 [18,19].

We can offer a physical argument on why PDð‘Þ is
expected to converge for ‘ ! 0 as a result of cancellations
from space-averaging. The origin of such cancellations can
be heuristically explained using decorrelation effects
very similar to those studied in [5,20]. While pressure in
hPr � ui derives most of its contribution from the largest
scales, r � u is dominated by the smallest scales.
Therefore, pressure varies slowly in space, primarily at
scales �L, while r � u varies much more rapidly, primar-
ily at scales ‘� 	 L, leading to a decorrelation between

the two factors. More precisely, the pressure �P‘ in PDð‘Þ
may be approximated by �P‘ ¼ O½Prms� ¼ O½ �PL� such that

h �P‘r � �u‘i 
 h �PLr � ðð �u‘ÞL þ ð �u‘Þ0LÞi

 h �PLr � �uLi þ h �PLihr � ð �u‘Þ0Li:

The first term in the last expression follows from ð �u‘ÞL 

�uL, while the second term is due to an approximate statis-
tical independence between �PL and r � ð �u‘Þ0L � �uð‘Þ=‘
which varies primarily at much smaller scales �‘ 	 L. If
there is no transport beyond the domain boundaries or if the
flow is either statistically homogeneous or isotropic, we get
hr � ð �u‘Þ0Li ¼ 0. The heuristic argument finally yields that
pressure dilatation,

PD ð‘Þ ¼ h �P‘r � �u‘i 
 h �PLr � �uLi; (11)

becomes independent of ‘, for ‘ 	 L. Expression (11)
corroborates our claim that the primary role of pressure
dilatation is conversion of large-scale kinetic energy into
internal energy and does not take part in the cascade
dynamics beyond a transitional conversion scale range.

In summary, we conclude that there exists an inertial
range in high Reynolds number compressible turbulence
over which kinetic energy reaches dissipation scales
through a conservative and scale-local cascade process.
This precludes the possibility for transfer of kinetic energy

from the large-scales directly to dissipation scales, such as
into shocks, at arbitrarily high Reynolds numbers as is
commonly believed. We make several assumptions and
predictions which are amenable to empirical scrutiny.
Our locality results concerning the SGS flux can be verified
in a manner very similar to what was done in [5,8]. We also
invite empirical tests of assumption (8) on the scaling of
pressure dilatation cospectrum. Preliminary numerical re-
sults by [21] of compressible isotropic turbulence indicate
that indeed the cospectrum decays at a rate faster than k�1.
Verifying (8) or (9) under a variety of controlled conditions
would substantiate the idea of statistical decoupling be-
tween mean kinetic and internal energy budgets. In a
follow-up study, we shall show through rigorous analysis
and physical reasoning how the scaling of velocity, density,
and pressure structure functions can be inferred from rela-
tion (10).
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