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We study the adhesion of an elastic sheet on a rigid spherical substrate. Gauss’s Theorema Egregium

shows that this operation necessarily generates metric distortions (i.e., stretching) as well as bending. As a

result, a large variety of contact patterns ranging from simple disks to complex branched shapes are

observed as a function of both geometrical and material properties. We describe these different

morphologies as a function of two nondimensional parameters comparing, respectively, bending and

stretching energies to adhesion. A complete configuration diagram is finally proposed.
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Different types of projections have been developed to
map Earth, such as the Mercator projection [1] widely used
for navigation purposes. Cartographers creating these pro-
jections face the challenge to transform a sphere into a
planar region. However, Gauss proved in his Theorema
Egregium that such an operation cannot preserve both areas
and angles. Indeed the product of the principal curvatures
is constant under local isometry [2]. In other words,
Gauss’s theorem states that it is impossible to flatten a
tangerine peel without tearing it. As a consequence, the
length scale on a Mercator conformal map (which does
preserve the angles) depends on the latitude. Sailors
searching for the shortest route to cross the oceans thus
follow curved paths on such maps. From a technological
point of view, covering a curved substrate with a flexible
surface is however a common operation. For instance,
placing a contact lens over an eye of a mismatched geome-
try induces stresses in lenses [3] and wrapping a sphere
with a flat paper generates wrinkles [4]. As a practical
consequence, bandages dedicated to knuckles or nose are
tailored into specific templates in order to provide a good
adhesion on round body parts [5]. Understanding the ad-
hesion of vesicles on curved substrates is also crucial for
some drug delivery applications [6]. In the field of micro-
technology, special processes for depositing thin films [7]
or components [8] on curved substrates have been devel-
oped especially to account for the geometrical constraints
dictated by Gauss’sTheorema Egregium. New theoretical
approaches have also been recently developed to account
for the specific crystallographic properties of crystals lying
on curved substrates [9]. The contact between a graphene
sheet and a corrugated soft substrate finally allows us to
estimate the adhesion energy and bending stiffness of the
graphene sheet [10], which leads to novel metrology
techniques.

We propose to study, through model experiments, the
reciprocal problem of the cartographer, i.e., transforming a
planar elastic sheet into a portion of a sphere. A thin film is
deposited on a rigid spherical cap coated with a thin liquid

layer [Fig. 1(a)]. Surface tension promotes the contact
between the film and the sphere, which reduces the
liquid-air interfacial energy at the cost of bending and
stretching energies in the film. Experiments were con-
ducted with polypropylene films (Innovia films) of four
different thicknesses h ¼ 15, 30, 50, and 90 �m. The
Young’s modulus and the Poisson’s ratio of the polymer
are E ¼ 2:6� 0:2 GPa and � ¼ 0:4, respectively. Prior to
experiments, rigid polystyrene or glass spheres of radius
ranging from 25 mm to 500 mmwere coated with a layer of
ethanol of surface tension � ¼ 22:4 mN �m�1, which al-
lows the sheets to adhere on the spheres (ethanol totally
wets both the spheres and the films). Depending on the
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FIG. 1 (color online). (a) Experimental setup: an elastic plate
of typical size L, Young’s modulus E, Poisson’s ratio �, and
thickness h is placed onto rigid sphere of radius R coated with
ethanol (surface tension � ¼ 22:4 mN �m�1). Ethanol totally
wets both the plate and the sphere. (b) Typical experimental
observation: (E ¼ 2:6 GPa, � ¼ 0:4, h ¼ 15 �m, R ¼ 60 mm).
In this example the region in contact with the sphere (contact
zone) forms branched wavy patterns, while the unstuck parts of
the sheet do not touch the sphere. A fluorescent dye allows us to
visualize the liquid meniscus that delimits both regions.
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parameters of the system, different morphologies of the
contact zone between the sphere and the film are observed,
spanning from total contact to branched patterns involving
zigzagging contact zones and large unstuck parts
[Fig. 1(b)]. Before describing the complex case of a sheet
we first consider the simplified situation of an axisymmet-
ric portion of a sheet: a thin elastic annulus deposited on a
sphere. We proceed by highlighting the relevant physical
parameters involved when an elastic plate adheres to a
rigid sphere. We then study the typical size of contact
between the plate and the sphere, as well as the contact
pattern. We finally present a configuration diagram show-
ing the pattern observed as a function of the relevant
physical parameters.

Consider the simplified case of a flat elastic annulus
delimited by concentric circles of respective radii L and
Lþ b (with b � L) deposited on the surface of an adhe-
sive sphere of radius R [Fig. 2(a)]. As observed in Fig. 2(c),
only a limited portion of the annulus is in contact with the
sphere, while the remaining part forms a unique blister of
height d and width �. We consider first the portion of the
annulus [in grey in Fig. 2(a)] in contact with the sphere.
The corresponding angular sector can be bent into a cone
with half angle � as shown in Fig. 2(a), with all lengths
being conserved in this isometric operation. Only one
angle � allows us to lay the annulus arc tangentially to
the sphere of radius R, which is equivalent to contact in the
limit b � L. This geometric condition sets the latitude �
and can be formulated in terms of geodesic curvature: to
avoid local change of external and internal perimeters, the
geodesic curvature �g ¼ tan�=R of the annulus has to be

equal to its initial planar curvature 1=L, yielding

tan� ¼ R=L [2]. However, this geometrical constraint im-
poses a global excess of perimeter length for the annulus,
�l ¼ 2�ðL� R cos�Þ. Within the limit of narrow annuli
(L � R) this excess length scales as �l� L3=R2. The
height and width of one-dimensional blisters are dictated
by a balance between adhesion and bending energies

[11,12], which leads to d��l2=3L1=3
ec � L2L1=3

ec =R4=3,

where Lec ¼
ffiffiffiffiffiffiffiffiffiffi
B=�

p
is referred to as the elastocapillary

length [13], with B ¼ Eh3=½12ð1� �2Þ� corresponding to
the bending modulus of the plate. Experiments agree well
with the prediction for the height of the blister [Fig. 2(b)]
confirming the above description where stretching energy
has been neglected. A disk of radius L can be seen as a
collection of annuli, and it is tempting to consider the
union of optimal (stretch-free) shapes for each annulus.
However, this solution involves at least radial compression,
since the disk radius along the sphere Rð�=2� �Þ would
be smaller than the initial L ¼ R tanð�=2� �Þ, leading to
a typical radial strain ðL=RÞ2. The corresponding stretching
energy has thus to be taken into account in the description
of the adhesion of the plain sheet.
We consider now the initial case of a disk of radius L

deposited on a sphere of radius R coated with a wetting
liquid. We restrict ourselves to the limit where the volume
of liquid goes to zero, which is equivalent to considering
dry adhesion without friction. Mapping the sphere with the
disk requires bending the initially flat sheet, which involves
a bending energy on the order of Eb � ðB=R2ÞL2 [14],
the corresponding decrease in adhesion energy being
E� � �L2. Bending is thus promoted if R is large in

comparison to Lec, which leads to a dimensionless parame-
ter R=Lec. Bending energy being predominant in the plate
for small deflections, i.e., for small contact areas, contact
between the sphere and the plate is thus expected only
for R> Lec.
In addition to bending, stretching is also involved as

previously illustrated with the annuli. In order to estimate
the strain involved when the disk is forced to match the
sphere, we assume that each perimeter of the plate remains
of constant length. The variation in length in the radial
direction is thus on the order of �l� L3=R2, which cor-
responds to the typical strain ���l=L� ðL=RÞ2 (this
strain can also be quantitatively derived from classical
Föppl—von Kármán equations [15,16]) and to the energy
Es � EhL2�2 � EhL6=R4. The balance of this stretching
energy with adhesion leads to the dimensionless ratio L=	,

with 	 ¼ Rð�=EhÞ1=4. Within the limit R � Lec, bending
is negligible compared to adhesion. The extension of the
contact zone should then be dictated by an equilibrium
between stretching and adhesion energies, and is thus
expected to scale as 	.
We measured quantitatively the size of the contact zone

for the different patterns obtained in experiments in the
regime R � Lec. We define this size a as the radius of the
largest disk inscribed in the contact zone [inset in Fig. 3(a)

L
b

R

d

θ

λ

L

θ

1/3L2 Lec
4/3R/

d
(m

m
)

0 2 4 6 8 10 12
0

5

10

15

20

25

10 mm

FIG. 2. (a) Experimental setup: an elastic annulus of radius L
and width b is deposited on a sphere coated with etha-
nol. (b) Height of the blister for a typical experiment
(R ¼ 100 mm, Lec ¼ 18 mm, b ¼ 2 mm, and 16:5 mm< L<
44:5 mm). (c) Side view of the blisters obtained as elastic annuli
of increasing radii are successively deposited on an adhesive
sphere.
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and black circles in Figs. 3(b)–3(e)]. As expected, a is
found proportional to 	 with a prefactor 1.9 [Fig. 3(a)].
Discrepancies may be attributed to boundary effects, which
can locally change the stretching energy. Moreover, bend-
ing energy also tends to decrease the extension of the
contact zone when R=Lec is close to unity. The maximum
size of complete contact amax of a plate on a sphere

can be more precisely written as amax ¼ ½ð
�R4=EhÞ �
�h2R2�1=4, where the constants 
 and � depend on the
geometry of the plate. In the case of a disk, these constants
are 
 ¼ 256 and � ¼ 32=3ð1� �Þ (with E� ¼ 2�S) as

demonstrated by Majidi and Fearing [16], while for a strip
we found 
 ¼ 36 and � ¼ 3=2ð1� �Þ [17]. The prefactor
found experimentally for branched patterns is thus
relatively close to the case of a strip (which would give a

prefactor of 2.45). A solution to ensure the complete ad-
hesion of a plate of low bending rigidity on a sphere thus
consists in cutting the plate into portions of widths smaller
than 	.
We now describe the geometry of the adhesion patterns

as a function of the two parameters R=Lec and L=	. As
previously mentioned, when the ratio R=Lec < 1, the con-
tact is limited to a point (case 1 in Fig. 4). Conversely,
R=Lec � 1 leads to a pattern of typical size a ’ 1:9	. If
the actual radius of the patch is smaller than a, a full
coating should thus be observed (case 2 in Fig. 4). The
opposite situation is however richer: if we consider a fixed
value for L=	 and progressively increase R=Lec, patterns
more and more complex are experimentally observed. The
lowest values of R=Lec only allow for a local bending of the
sheet, which leads to a disk shaped contact zone (case 3 in
Fig. 4). Bending the whole sheet in one direction would
indeed involve a greater bending energy on the order of
ðB=R2ÞL2, while the change in adhesion energy would be
proportional to �L	. We thus expect a striplike adhesion
pattern (case 4 in Fig. 4) for L=	 < c1ðR=LecÞ2, where c1 is
a numerical prefactor. We found from our experiments
c1 ¼ 19� 3. Wavy strips are observed for higher values
of R=Lec (case 5 in Fig. 4). Indeed, the contact between a
strip and a sphere implies longitudinal stretching and com-
pression along the contact edge. The transition to an oscil-
lating pattern corresponds to an out-of-plane movement of
the contact line, which releases the in-plane compression.
More quantitatively, this peculiar buckling instability oc-
curs when the stretching energy density of the strip
Ehð	=RÞ4 � � is of the same order as the bending energy
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FIG. 3 (color online). (a) Size of the contact zone a, defined as
the radius of the largest disk inscribed in the contact zone (inset),
as a function of Rð�=EhÞ1=4 for four different thicknesses
and radii of a sphere spanning 25 to 500 mm. Solid line: linear
fit a ¼ 1:9Rð�=EhÞ1=4. (b) R ¼ 25 mm, E ¼ 2:8 GPa,
h ¼ 30 �m. (c) R ¼ 25 mm, E ¼ 2:6 GPa, h ¼ 15 �m.
(d) R ¼ 197 mm, E ¼ 2:6 GPa, h ¼ 15 �m. (e) R ¼ 50 mm,
E ¼ 2:6 GPa, h ¼ 15 �m.
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FIG. 4 (color online). Configuration diagram of the observed
patterns of contact as a function of R=Lec and L=	, with 	 ¼
Rð�=EhÞ1=4. Diamonds correspond to complete contact (case 2),
stars to local disk shaped contact (case 3), squares to straight
strips (case 4), triangles to oscillating strips (case 5), and circles
to branched patterns (case 6). Grayscale corresponds to different
materials, from dark to light gray: polyethylene (E ¼ 170 MPa,
� ¼ 0:4, blue online), polypropylene (E ¼ 2:6 GPa, � ¼ 0:4,
red online), steel (E ¼ 212 GPa, � ¼ 0:3, pink online), and
natural rubber (E ¼ 1:3 MPa, � ¼ 0:5, green online).
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density induced by the out-of-plane bending of the sheet
B=R2. This transition is thus expected when R=Lec be-
comes greater than a critical value of order 1. We found
experimentally that this transition occurs for R=Lec > 3�
0:3. This instability is described in detail in a coming paper
[18]. Branched patterns finally appear for higher values of
R=Lec (case 6 in Fig. 4). In this situation, the whole sheet is
effectively bent in both directions. We expect the scaling
laws for the bending energy, ðB=R2ÞL2, and the adhesion
energy, �L	, to remain valid, but with larger prefactors
than in the previous cases. Branched patterns should there-
fore develop for L=	 < c2ðR=LecÞ2, where c2 is a numeri-
cal prefactor (lower than c1). A fit with the experimental
data indicates c2 ¼ 1:3� 0:3. The different configurations
observed for materials spanning 5 orders of magnitude of
Young’s modulus are depicted in Fig. 4. The collapse of the
experimental data confirms our scaling arguments for the
transitions and the relevance of the pair of nondimensional
parameters R=Lec and L=	 to describe the adhesion
patterns.

As can be observed on Fig. 1(b), the contact patterns are
simply connected: branches never reconnect, and de-
bonded areas always reach the edge of the sheet. Indeed,
consider a closed curve @S drawn on the sphere, along
which the plate is in contact with the sphere (and therefore
touches tangentially the sphere), but not on Sp, the plate

surface. The corresponding surface on the sphere is labeled
Ss. The Gauss-Bonnet theorem on the plate or on the
spherical cap reads

R
S K þ R

@S kg ¼ 2�, where K and

kg are the Gaussian curvature and the geodesic curvature,

respectively [2]. This leads to
R
Sp
K ¼ R

Ss
K ¼ Ss=R

2, as

@S belongs to both the plate and the sphere. The Gaussian
curvature K integrated on Sp is thus finite and independent

of the shape taken by the plate. According to the Theorema
Egregium, the plate bounded by @S is necessarily
stretched, even if not in contact with the sphere. The strain
induced by the finite Gaussian curvature is given by
��� K [19] and scales as �� R

Ss
K � Ss=R

2 if the shape

is characterized by a single typical dimension (elongated
shapes are excluded). Stretching energy is thus as a first
approximation independent of the actual shape of the plate.
Since the decrease in adhesion energy is proportional to the
contact surface, it is always energetically favorable to put
in contact any region bounded by a closed contact line :
branched patterns cannot reconnect.

To summarize, a wide variety of adhesion patterns,
ranging from full contact to branched shapes, are observed
as an elastic sheet is laid down a rigid adhesive sphere.
Because of the mismatch in Gaussian curvatures, wrapping
the sphere involves finite stretching in the contact zone.
While a balance between stretching and adhesion energies

provides the typical width of the zone a� Rð�=EhÞ1=4, the
balance between bending and adhesion energies dictates
the complexity of the pattern: simple disk, straight
strip, oscillatory strip, or branches. These different

configurations can be predicted from two nondimensional

parameters L=	� ðEh=�Þ1=4L=R and R=Lec � R
ffiffiffiffiffiffiffiffiffiffi
�=B

p
.

Since surface forces become predominant at small scales
[13], we expect our results obtained through macroscopic
experiments to be valid for micro- and nanotechnologies.
As an example, if a graphene monolayer (E ’ 1 TPa,
h ’ 0:34 nm [20]) is deposited on a silica bead of
radius R (with a Van der Waals adhesion energy of
W ’ 500 mJ �m�2 [21]), partial contact is expected for

R> 9 �A, with a contact width on the order of 0:2R.
Material properties (adhesion energy, mechanical stiffness)
can finally be inferred from the analysis of the adhesion
patterns, which may lead to a novel metrology technique
relevant for thin films.
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