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We introduce a method based on chiral susceptibility, which enables one to draw a phase diagram in the

chemical-potential–temperature plane for strongly interacting quarks whose interactions are described by

any reasonable gap equation, even if the diagrammatic content of the quark-gluon vertex is unknown. We

locate a critical end point at ð�E; TEÞ � ð1:0; 0:9ÞTc, where Tc is the critical temperature for chiral-

symmetry restoration at � ¼ 0, and find that a domain of phase coexistence opens at the critical end point

whose area increases as a confinement length scale grows.
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A central goal of the worldwide program in relativistic
heavy ion collisions is to chart the phase diagram of QCD
in the plane of nonzero temperature (T) and chemical
potential (�). This will provide fundamental insight into
the origin of observable mass and the nature of the early
Universe. Two decades of intense speculation have led to
an expectation that the phase diagram is complex. The
existence of a critical end point in the ð�; TÞ plane has
been conjectured [1]. In the chiral-limit theory, this marks
the end of a line of second-order chiral-symmetry-restoring
(and possibly deconfining) transitions, originating on the
temperature axis, and the beginning of a line of first-order
transitions. Such a critical end point would have observable
consequences [2], so it is imperative to demonstrate its
existence, determine its location, and demarcate the sub-
sequent domain of phase coexistence.

Attempts have been made by using lattice QCD. Such
studies rely on Monte Carlo methods, but the absence of a
probability measure at � � 0 precludes direct computa-
tion. Therefore, mathematical devices are necessarily em-
ployed in the search for a critical end point (CEP). They
yield [3,4] �E=Tc ¼ 1:0–1:4, TE=Tc � 0:93, and a signal
for a material phase coexistence region [4]. However, it is
not yet certain whether the existence of a CEP survives in
simulations with lattice parameters that more closely re-
semble the physical world [5].

Models have also been used to search for a CEP. The
Nambu–Jona-Lasinio (NJL) type yield [6] �E=Tc � 1:7
and TE=Tc � 0:4; their Polyakov-loop extensions produce
[7] �E=Tc ¼ 1:5–1:8 and TE=Tc ¼ 0:3–0:8; and a chiral
quark model gives [8] ð�E; TEÞ=Tc ¼ ð2:0; 0:4Þ. On the
other hand, a Polyakov-loop-augmented chiral quark
model produces [9] ð�E; TEÞ=Tc ¼ ð0:9; 0:8Þ. The former,
mutually consistent results for the CEP’s location conflict
markedly with those obtained from lattice QCD: �E=Tc is
significantly larger and TE=Tc much smaller. If they are
nevertheless correct, then finding the CEP in experiment

will be difficult because modern colliders are restricted to
exploration of the small-� domain. Given this observation,
it is unsurprising that an analysis of flow data from the
relativistic heavy ion collider leads to the estimate [10]
�E=Tc * 1:0 and TE=Tc & 1:0.
The Dyson-Schwinger equations (DSEs) provide a non-

perturbative approach to studying continuum QCD [11]
and have been used to prove exact results relating to chiral
symmetry [12–14]. Simple DSE truncations have been
applied to the CEP problem. A confining zero-width
momentum-space interaction, the antithesis of the NJL
model, produces [15] �E=Tc ¼ 0 and TE=Tc ¼ 1, and a
separable interaction [16] �E=Tc ¼ 1:09 and TE=Tc ¼
0:78. However, neither study described a region of coex-
isting phases. Notwithstanding that, in this chain of re-
marks about the model results, there is a hint that the length
scale characterizing confinement in the quark-antiquark
interaction markedly influences the location of the CEP.
Herein we employ the DSEs to produce a phase diagram

for strongly interacting quarks, to locate a CEP and demar-
cate the coexistence region. The basic tools are the chiral
susceptibility and the gap equation. In QCD its kernel is
defined by a contraction of the dressed-gluon propagator
and dressed-quark-gluon vertex. For the former we use a
form that can interpolate between models of the nonconfin-
ing NJL type and the confining interactions used in effica-
cious DSE studies of hadron observables [17], while
always providing a superrenormalizable interaction. For
the latter, we use either the rainbow truncation, i.e., the
leading-order term in a symmetry-preserving scheme [18],
or a dressed-vertex ansatz. The capacity to draw the phase
diagram derived from an arbitrary dressed vertex is essen-
tially new.
At T � 0 � �, the gap equation is ( ~!n ¼ !n þ i�)

Sð ~p; ~!nÞ�1 ¼ i ~� � ~pþ i�4 ~!n þmþ�ð ~p; ~!nÞ; (1)
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��ð ~q; ~!l; ~p; ~!nÞ; (2)

where !n ¼ ð2nþ 1Þ�T is the fermion Matsubara fre-
quency, �nl ¼ !n �!l, D�� is the dressed-gluon propa-

gator, and �� is the dressed-quark-gluon vertex. [As we
employ an ultraviolet-finite model, renormalization is un-
necessary and m ¼ 0 in Eq. (1) defines the chiral limit.]

The gap equation’s solution can be expressed as

Sð ~p; ~!nÞ�1 ¼ i ~� � ~pAð ~p2; ~!2
nÞ þ i�4 ~!nCð ~p2; ~!2

nÞ
þ Bð ~p2; ~!2

nÞ; (3)

with, e.g., Bð ~p2; ~!2
nÞ� ¼ Bð ~p2; ~!2

�n�1Þ. The dressed-gluon
propagator has the form

g2D��ð ~k;�nlÞ ¼ PT
��DTð ~k2;�2

nlÞ þ PL
��DLð ~k2;�2

nlÞ; (4)

where PT;L
�� are, respectively, transverse and longitudinal

projection operators. While for T � 0 � � it is generally
true that DT � DL, there are indications [19] that for
T < 0:2 GeV, the domain with which we are concerned,
it is a good approximation to treat DT ¼ DL ¼: D0. For
the in-vacuum interaction we use a simplified form of that

in Ref. [20], viz., with � ¼ ~k2 þ�2
nl:

D0ð�Þ ¼ D
4�2

�6
�e��=�2

: (5)

The parameters in Eq. (5) are D and �, but they are not
independent: A change in D can be compensated by an
alteration of � [17]. For � 2 ½0:3; 0:5� GeV, by using
Eq. (6) below, ground-state pseudoscalar and vector-meson
observables are roughly constant if �D ¼ ð0:8 GeVÞ3. We
usually use � ¼ 0:5 GeV. Note that Eq. (5) is used for
illustrative simplicity, not out of necessity. The status of
propagator and vertex studies can be tracked from
Ref. [21].

The gap equation is complete once the vertex is speci-
fied. For the meson spectrum it is now possible to use any
reasonable ansatz [22]. Herein we compare results ob-
tained by using the rainbow truncation:

��ð ~q; ~!l; ~p; ~!nÞ ¼ ��; (6)

the first term in a symmetry-preserving scheme [18], with
those produced by the Ball-Chiu (BC) ansatz [23,24]:

i��ð ~q; ~!l; ~p; ~!nÞ ¼ i�T
��A þ i�L

��C

þ ð~pn þ ~qlÞ�
�
i

2
�T
�ð~pn þ ~qlÞ��A

þ i

2
�L
�ð~pn þ ~qlÞ��C þ�B

�
; (7)

~pn ¼ ð ~p;!n þ i�Þ, ~ql ¼ ð ~q; !l þ i�Þ, with (F ¼ A; B; C)

�Fð ~q2; !2
l ; ~p

2; !2
nÞ ¼ 1

2½Fð ~q2; !2
l Þ þ Fð ~p2; !2

nÞ�; (8)

�Fð ~q2; !l; ~p
2; !nÞ ¼ Fð ~q2; !2

l Þ � Fð ~p2; !2
nÞ

~q2l � ~p2
n

; (9)

where, defining u ¼ ð0; 0; 0; 1Þ, �T
� ¼ �� � u���u� and

�L
� ¼ u���u�. The comparison is natural because vertices

of the type in Eq. (6) are widely used in studies of hadron
observables [17,21], and the BC ansatz provides a semi-
quantitatively accurate representation of lattice-QCD re-
sults for important terms in �� at T ¼ 0 ¼ � [25]. [It is

plain from Eq. (2) that with the BC vertex the effective

interaction strength is D̂ ¼ DAð0; 0Þ. In contrast, owing to

Eq. (6), D̂ ¼ D in the rainbow-ladder truncation.]
We have solved the gap equation formulated above and

in Fig. 1 depict the T dependence of a chiral susceptibility
[12] and a chiral-symmetry order parameter [14]

	ð0; !0Þ ¼ @

@m
Bð~0; !2

0Þ; (10)

� h �qqi0 ¼ NcT
X1

n¼�1
trD

Z d3p

ð2�Þ3 Sm¼0ð ~p;!nÞ: (11)

For T < TE the behavior of the order parameter is typical
of models without long-range correlations in the gap equa-
tion’s kernel [12], namely, initially slow evolution from its
T ¼ 0 value: h �qqi0 ¼ ð�0:258 GeVÞ3, which signals
chiral symmetry realized in the Nambu mode, i.e., dynami-
cally broken chiral symmetry, and this followed by a mean-
field transition to a phase with chiral symmetry restored,
i.e., realized in the Wigner mode.
The lower panels in Fig. 1 show the chiral susceptibility

of the Wigner and Nambu phases, which correspond to gap
equation solutions that are, respectively, within the domain
of attraction of the B ¼ 0 or B � 0 solution [26]. A phase
is unstable in response to fluctuations if the susceptibility is
negative but stable and realizable otherwise. With � ¼ 0,
one sees the Nambu phase completely replaced by the
Wigner phase at T ¼ 124 MeV.

FIG. 1. (a) Temperature dependence of the chiral-symmetry
order parameter in Eq. (11). Chiral susceptibility computed in
the Wigner phase (b) and in the Nambu phase (c). In all panels,
the Ball-Chiu vertex was used [Eq. (7)], � ¼ 0, D ¼ 0:5 GeV2,
and m ¼ 0.
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This should be contrasted with the behavior in Fig. 2. At
T ¼ 0 the order parameter remains constant with increas-
ing � until �a ¼ 0:30 GeV, which is the upper bound on
the domain of analyticity for our gap equation’s kernel
[27]. On a small domain beyond this, viz., �2ð�a;�

N
c Þ,

with �N
c ¼ 0:314 GeV, the order parameter diminishes

smoothly, an effect that may be denominated a partial
restoration of chiral symmetry. For �>�N

c the order
parameter vanishes so that chiral symmetry is completely
restored via a first-order transition.

The lower panels of Fig. 2 provide extra information.
For �<�W

c ¼ 0:286 GeV, the Wigner phase is unstable.
That changes at �W

c , when 	W switches sign, and there-
after, on the domain �W

c < �<�N
c , both the Wigner- and

Nambu-phase susceptibilities are positive. This is the do-
main of phase coexistence, with a metastableWigner phase
for �W

c < �<�a and a metastable Nambu phase for
�a <�<�N

c . The pressure of the phases is equal at � ¼
�a, and the Nambu phase is completely displaced by the
Wigner phase for �>�N

c . Notably, with an ansatz for the
dressed-quark-gluon vertex, the diagrammatic content of
the gap equation’s kernel is generally unknown. However,
owing to the insights provided in Ref. [28], one can draw
these conclusions despite being unable to calculate an
explicit expression for the thermodynamic pressure.

At the onset of the coexistence domain we expect pock-
ets of deconfined, chirally symmetric quark matter to
appear in the confining Nambu medium. Their number
and average volume will increase with �. The opposite
situation occurs at the termination of the domain; i.e., it is
the Nambu phase which exists only in pockets. For � 2
ð�a;�

N
c Þ, which is the domain of Nambu-phase meta-

stability, the properties of observed hadrons will be af-
fected by the partial restoration of chiral symmetry.

We performed computations at many ð�; TÞ values and
therefrom drew the phase diagrams in Fig. 3. The upper
panel was obtained with the rainbow truncation, Eq. (6),
in which case the diagrammatic content of the gap equa-
tion’s kernel is known and one can thus compute the

dressed-quark component of the pressure. It is given by
the auxiliary-field effective action evaluated at its extrema
[11]. Within the domain (�<�E, T > TE) the system
exhibits a mean-field transition, which is signalled by
both equality of the Wigner- and Nambu-phase pressures
and coincident singularities in the Wigner- and Nambu-
phase chiral susceptibilities. The curve tracking the singu-
larity location in the Wigner and Nambu susceptibilities
bifurcates at the CEP, with a domain of phase coexistence
opening. Naturally, the curve of equal thermodynamic
pressure lies within this domain.
The lower panel in Fig. 3 was obtained by using the

dressed vertex, Eq. (7). Its features are similar to those
displayed in the upper panel, but the domain of phase
coexistence is smaller. Here, one cannot derive a form
for the dressed-quark pressure. Thus it is only an appre-
ciation of the information contained in the chiral suscepti-
bilities that enables a phase diagram to be drawn.
It has long been conjectured that confinement is ex-

pressed in the analytic structure of the dressed-quark
propagator [11,17,21]. Measured in this way, it is signifi-
cant that the models we have considered are members of a
class in which chiral-symmetry restoration is accompanied
by a coincident dressed-quark deconfinement transition in
the chiral limit.

FIG. 2. Analogue of Fig. 1, displaying evolution with chemical
potential at T ¼ 0.

FIG. 3. Chiral-limit phase diagram in the temperature–-
chemical-potential plane for strongly interacting quarks. The
CEP is marked explicitly. Upper panel: Rainbow vertex
[Eq. (6)] with D ¼ 1:0 GeV2. Lower panel: Ball-Chiu vertex
[Eq. (7)] with D ¼ 0:5 GeV2.
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In Table I, we illustrate the response of the CEP’s
location to changing the vertex or the parameters. By
defining a confinement length scale r� ¼ 1=�, it is appar-
ent that the CEP rotates toward the temperature axis as r�
is increased. The extreme case is r� ¼ 1, which was
computed in Ref. [15] and reported above: (�E; TEÞ=Tc ¼
ð0; 1Þ. Models of the NJL type, as they have been used in
the current context, represent the opposite limiting case:
They are expressed via a gap equation in which the con-
finement length scale vanishes. From this perspective, it is
unsurprising that they produce a CEP whose angular sepa-
ration from the � axis is significantly smaller.

We described a method, based on chiral susceptibility,
which enables one to draw a phase diagram in the
chemical-potential–temperature plane for quarks whose
interactions are described by any sensibly constructed
gap equation. Thus, in attempting to chart the phase struc-
ture of QCD by using the methods of continuum quantum
field theory, one is no longer restricted to the simplest class
of mean-field kernels: Sophisticated quark-gluon vertices
can be used. The method is general and potentially useful
in all branches of physics that explore the properties of
dense fermionic systems.

A class of models that successfully describes in-vacuum
properties of � and 
 mesons exhibits a CEP in the
neighborhood ð�E; TEÞ � ð1:0; 0:9ÞTc. The CEP’s angular
separation from the temperature axis is a measure of the
confinement length scale: The separation decreases as the
confinement length scale increases. Furthermore, a domain
of phase coexistence opens at the CEP. Its size depends on
the structure of the gap equation’s kernel, but, other aspects
being equal, it increases in area as the confinement length
scale increases. We are hopeful that illumination of the
CEP and its consequences is within the reach of modern
colliders.
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Model Result
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BC 0.7 0.45 0.128 0.048 (0.69, 0.92) 0.75
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