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We consider the manifold of all quantum many-body states that can be generated by arbitrary time-

dependent local Hamiltonians in a time that scales polynomially in the system size, and show that it occupies

an exponentially small volume in Hilbert space. This implies that the overwhelming majority of states in

Hilbert space are not physical as they can only be produced after an exponentially long time. We establish

this fact by making use of a time-dependent generalization of the Suzuki-Trotter expansion, followed by a

well-known counting argument. This also demonstrates that a computational model based on arbitrarily

rapidly changing Hamiltonians is no more powerful than the standard quantum circuit model.
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The Hilbert space of a quantum system is big—its
dimension grows exponentially with the number of
particles it contains. Thus, parametrizing a generic
quantum state of N particles requires an exponential
number of real parameters. Fortunately, the states of
many physical systems of interest appear to occupy a
tiny submanifold of this gigantic space. Indeed, the
essential physical features of many systems can be
explained by variational states specified with a small
number of parameters. Well-known examples include
the BCS state for superconductivity [1], Laughlin’s state
for fractional quantum Hall liquids [2], and tensor net-
work states occurring in real-space renormalization
methods [3]. In these cases, the number of parameters
scales only polynomially with N.

In this Letter, we attempt to define the class of physical
states of a many-body quantum system with local Hilbert
spaces of bounded dimensions and prove that they repre-
sent an exponentially small submanifold of the Hilbert
space. We say that a state is physical if it can be reached,
starting in some fiducial state (e.g., a ferromagnetic state,
or the vacuum), by an evolution generated by any time-
dependent quantummany-body Hamiltonian, with the con-
straint that (1) the Hamiltonian is local in the sense that it is
the sum of terms each acting on at most k bodies for some
constant k independent of N, and (2) the duration of the
evolution scales at most as a polynomial in the number of
particles in the system. The duration of the evolution has a
meaning only if there is a well-defined time or energy
scale. We do this by setting the strength of the local terms
in the Hamiltonian to some constant E. Such bounded
interaction strength is crucial to our derivation. The as-
sumption about the initial fiducial state is artificial; we
could alternatively define the class of physical evolutions
for quantum many-body systems as the ones generated by

Hamiltonians obeying constraints (1) and (2), and would
reach the same conclusions.
The second constraint is very much reminiscent of the

way complexity classes are defined in theoretical computer
science, where the central object of study is the scaling of
the time required to solve a problem as a function of its
input size. The classical analogue for the problem that we
address is a well-known counting argument of Shannon [4]
demonstrating that the number of Boolean functions of N

bits scales doubly exponentially (as 22
N
), with the conse-

quence that no efficient (i.e., polynomial) algorithm can
exist to compute the overwhelming majority of those
functions. Indeed, the number of different functions that
can be encoded by all classical circuits of polynomial

depth scale as 2polyðNÞ, which is exponentially smaller
than the total number of Boolean functions.
Our contribution is a quantum generalization of this

result. The crux of our argument is to demonstrate that
the dynamics generated by any local Hamiltonian, without
any assumptions on its time dependence, can be simulated
by a quantum circuit of polynomial size. All previously
known simulation methods [5–10] produced a quantum
circuit of complexity that depends on the smoothness of
the Hamiltonian, scaling, e.g., with k@H=@tk or some
higher derivatives. Using the results of Huyghebaert and
De Raedt [11], we show how these conditions can be
overcome. We then use a well-known counting argument
[12] for quantum circuits that involves the Solovay-Kitaev
theorem [13] to arrive at the conclusion that most states
in the Hilbert space are not physical: they can only be
reached after an exponentially long time. Note that a direct
parameter counting would not produce this result because
we impose no restriction on the time dependence of
the Hamiltonian. The complete description of a rapidly
changing Hamiltonian requires lots of information, so
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from this perspective there are in principle enough parame-
ters to reach all states in the Hilbert space.

Our demonstration that arbitrary local time-dependent
Hamiltonians can be efficiently simulated on quantum
computers is of interest in its own right in the context of
quantum computation. More precisely, we are concerned
with Hamiltonians acting on N particles of the form

HðtÞ ¼ X
X�f1;2;...;Ng

HXðtÞ; (1)

where X labels subsets of the N particles, each term has
bounded normkHXðtÞk � E, and each term acts on no
more than k particles, i.e., HXðtÞ ¼ 0 if jXj> k, and k
is fixed, independent of the system size. We make no
assumption on the geometry of the system, and the cou-
pling can be arbitrarily long ranged. The time-evolution
operator Uð0; tÞ from time 0 to t is governed by
Schrödinger’s equation d

dt Uð0; tÞ ¼ �iHðtÞUð0; tÞ, with

solution given in terms of a time-ordered integralUð0; tÞ ¼
T expfRt

0 HðsÞdsg.
Starting with Feynman’s exploration of quantum com-

puters [14], it has been well established that the time-
evolution operator generated by Hamiltonians of the form
Eq. (1) can be decomposed into short quantum circuits,
provided that HðtÞ varies slowly enough [5–10]. In all
cases, this is achieved by approximating the evolution
operator by a product formula

Uð0; tÞ � YNP

p¼1

expf�iHXp
ðtpÞ�tpg; (2)

where the sequences Xp, tp, and �tp are set by specific

approximation schemes, such as the Trotter formula [15] or
the Lie-Suzuki-Trotter formula [16]. Because each term
HX acts on at most k particles, this last expression repre-
sents a sequence of k-body unitaries. A standard quantum
circuit is obtained by simulating each of these k-body
operators as a sequence of one- and two-qubit gates using
the result of Solovay-Kitaev [13,17].

Perhaps the simplest example of a product formula
decomposition of Uð0; tÞ is given by

Uð0; tÞ � Yn
j¼1

Y
X

expf�iHXðj�tÞ�tg; (3)

where the product over X can be carried in any given order.
This decomposition makes use of two approximations.
First, the time dependence of the HðtÞ is ignored on time
scales lower than�t: the Hamiltonian is approximated by a
piecewise constant function taking the values Hðj�tÞ on
the time interval ½ðj� 1Þ�t; j�t�. Second, each matrix
exponential is decomposed using the Trotter formula
expf�iHðtÞ�tg � Q

X expf�iHXðtÞ�tg. Clearly, the size
�t of the time intervals must be shorter than the fluctuation
time scale of HðtÞ for the first approximation to be valid,
�t � k@H=@tk�1. Higher frequency fluctuations would
therefore require breaking the time evolution into shorter

intervals, thus increasing the overall complexity of the
simulation.
Time-dependent Trotter-Suzuki expansion.—Somewhat

surprisingly, it is possible to generalize the Trotter-
Suzuki formula to time-dependent Hamiltonians without
compromising the error, where the Hamiltonian may ex-
hibit fluctuations much faster than the time step �t. We
begin by breaking the total time evolution into short seg-
ments Uð0;tÞ¼Uðtn;tnþ�tÞ . . .Uðt2; t2þ�tÞUð0;0þ�tÞ,
each of duration �t

Uðtj; tj þ�tÞ ¼ T exp

�
�i

Z tjþ�t

tj

ds
X
X

HXðsÞ
�
:

In the simple case where the sum over X contains only two
terms, say H1 and H2, it has been shown [11] that the
generalized Trotter-Suzuki expansion

UTSðtj; tj þ �tÞ ¼ T exp

�
�i

Z tjþ�t

tj

dsH1ðsÞ
�

�T exp

�
�i

Z tjþ�t

tj

dsH2ðsÞ
�

gives an error in terms of the operator norm that is

kUðtj; tj þ �tÞ �UTSðtj; tj þ �tÞk � c12ð�tÞ2;
with c12 of the order of 1 and given by

c12 ¼ 1

ð�tÞ2
Z tjþ�t

tj

dv
Z v

tj

duk½H1ðuÞ; H2ðvÞ�k:

c12 is upper bounded by c2max=2 with cmax ¼ maxXkHXk,
with kHXk ¼ sup0�s�tkHXðsÞk. Note that this bound does
not depend on the derivative of the Hamiltonian (and is
therefore also valid for nonanalytic time dependence).
Note also that the bound reduces to the usual Trotter error
for the time-independent case and is therefore equally
strong, and that it can straightforwardly be generalized to
higher order decompositions.
For our present application, the Hamiltonian is the sum

of L 2 polyðNÞ k-particle terms, cf. Eq. (1). We can there-
fore iterate the above procedure log2ðLÞ times; at the nth
iteration, there are 2n terms, each of strength upper
bounded by cmaxL=2

n. The total error for approximating
the exact time evolution of the Hamiltonian with L terms
by a product of L time-ordered terms is

1

2
c2maxð�tÞ2

Xlog2L
m¼1

2m
�
L

2m

�
2 � 1

2
c2maxL

2ð�tÞ2;

which can be made arbitrary small by choosing a �t that
scales as an inverse polynomial in N. Approximating the
time-evolution operator over a total time twith a product of
k-body unitaries, such that the total error is �=2, can there-
fore be achieved by choosing �t ¼ �

tc2maxL
2 . The total num-

ber G of k-body unitaries to achieve this accuracy is then

equal to Gð�; L; tÞ ¼ L t
�t ¼ c2max

� t2L3.
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The value of each such k-body unitary can be obtained
by solving the corresponding finite time-ordered integral
on a classical computer. The Solovay-Kitaev (SK)
theorem [13,17] shows that each of these k-body unitary
transformations can be simulated with standard one-
and two-qubit gates chosen from a fixed discrete set (e.g.,
CNOT’s between any pair of qubits supplemented by a local

�=8 rotation gate). To achieve an accuracy �G per unitary
transformation, we need dSK½logcSK2 ð1=�GÞ� standard gates

with cSK and dSK constants; we choose �G such that �G ¼
�

2Gð�;L;tÞ . The total number of quantum gates as chosen from

a discrete set of gates needed to approximate the complete
time evolutionwith an error � is therefore upper bounded by
Gtotð�; L; tÞ ¼ dSKGð�; L; tÞlogcSK2 ½Gð�; L; tÞ=��, which is

polynomial in the number of qubits; it roughly scales quad-
ratically in t and as the cube of the total number of (non-
commuting) local terms in the Hamiltonian.

Average Hamiltonians and randomized evolution.—
Note that the time-dependent Trotter-Suzuki decom-
position described in the previous section does not
lead to a product formula because each term appearing

in it involves a time-ordered integral UXðtj; tj þ�tÞ ¼
T expf�i

Rtjþ�t
tj HXðsÞdsg rather than the exponential of

a term of the Hamiltonian at a given time expf�i�tHXðtÞg
as in Eq. (2). Although this does not affect the conclusions
reached in the next section on the counting of possible
quantum states, it is unsatisfactory from the point of quan-
tum simulation. In this section, we demonstrate how to
recover a product formula by making use of randomness.
In Ref. [18], product formula decompositions Eq. (2) were
found for any local Hamiltonian, where the number of
terms NP in the product depends on a smoothness parame-

ter �P ¼ sup0�p�P;0�s�t

P
Xðk@ps HXðsÞkÞ1=ðpþ1Þ. In par-

ticular, these decompositions are inefficient when the
fluctuation time scale of the Hamiltonian becomes too
small. Our methods circumvent these requirements by
using randomness. Further, randomization avoids the com-
plexity of integration.

We do this in two steps. First, we replace the time-
ordered exponential integral with the exponential of an
ordinary integral without introducing a significant error.
Indeed, we show in Appendix A in the supplemental
material [19] that�����T exp

�
�i

Z tjþ�t

tj

dsHXðsÞ
�
� exp

�
�i

Z tjþ�t

tj

dsHXðsÞ
������

� 2

3
kHXk2�t2: (4)

Using this result, we obtain the approximate decomposition

Uð0; tÞ � Yn
j¼1

Y
X

exp

�
�i

Z tjþ�t

tj

HXðsÞds
�
:

Note that this is still not a product formula because it
involves integrals. This first step has nevertheless elimi-
nated the need of a time-order operator.

The second step to obtain a product formula for
Uð0; tÞ—one that does not require any integrals—makes
use of randomness. The average Hamiltonian Hav

X;j on

the interval ½ðj� 1Þ�t; j�t� can be estimated using
Monte Carlo integration. For every j, we can pick m
random times �kj 2 ½tj; tj þ�t� and approximate Hav

X;j �
1
m

P
m
k¼1 HXð�kjÞ. Because the variance of the Hamiltonian is

bounded by kHXk2, the sum converges to Hav
X;j with error

estimate �tkHXk=
ffiffiffiffi
m

p
. Using this Monte Carlo average,

we can approximate the evolution operator of the time
interval ½tj; tj þ �t� by

Uav
X ðtj; tj þ�tÞ � exp

�
�i

1

m

Xm
k¼1

HXð�kjÞ
�

(5)

� Ym
k¼1

exp

�
�i

�t

m
HXð�kjÞ

�
; (6)

where the order of the product can be chosen according to
increasing values of �kj . The error in the first approximation

Eq. (5) is set by the Monte Carlo estimate �tkHXk=
ffiffiffiffi
m

p
while the second approximation Eq. (6) is the usual
Trotter-Suzuki formula. Summarizing, we can decompose

the total evolution operator from time 0 to t as Uð0; tÞ �Q
j;k;X expf�i �tm HXð�kjÞg, where the product should be

taken in increasing order of �kj and any order of X. This

is a standard product formula like Eq. (2)—identical to the
usual decomposition explained in the introduction [Eq. (3)]
and the one presented in [18]—except that the times �kj at

which the Hamiltonian is sampled are random. Thus, we
see that by sampling the Hamiltonian at random times, we
completely circumvent any smoothness requirements [20].
We note that the proof of Eq. (4) is an illustration

of the decoupling principle that tells us that the high-
frequency fluctuations of the Hamiltonian should not
affect the low-energy physics. As a consequence, it is
possible to largely ignore these fluctuations—by replacing
the time-dependent Hamiltonian by its average value on
each time bin—without significantly modifying the dy-
namics of the system. This is the working principle behind
renormalization group methods of quantum field theory
and quantum many-body physics. The rotating wave ap-
proximation [21] and effective Hamiltonian theory [22] are
simple examples illustrating this principle in the case of
time-dependent Hamiltonians.
More generally, we show in Appendix B of the supple-

mental material [19] that we can replace the time-
dependent Hamiltonian HðtÞ with a smoothed version
~HðtÞ with fluctuation time scale bounded by � without
significantly affecting the resulting time-evolution opera-
tor. More precisely, we show that the time-evolution op-
erators from time 0 to t differ by at most kHk2t�.
Counting states.—Let us now consider the set of all

quantum states that can be reached starting from some
fiducial state j0i and evolving for some polynomial amount
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of time under any time-dependent Hamiltonian. A direct
counting argument appears difficult because there are
infinitely many distinct time-dependent Hamiltonians,
and therefore there can a priori be infinitely many states
in that set. However, we just established that the time-
evolution operator generated by any one of these
Hamiltonians can be well approximated by a polynomial-
size quantum circuit built from a fixed set of M discrete
gates for some constant M.

Thus, to count the number of states that can be produced
by arbitrary time-dependent Hamiltonians, it suffices to
count the number of polynomial-size quantum circuits
constructed from a universal discrete set of one- and
two-qubit gates, and to consider an " ball around the output
of each of these circuits, i.e., the set of states within a
distance " of the outputs of these circuits. Surely, the states
reached in polynomial time by arbitrary time-dependent
Hamiltonians are contained in the union of these balls. It is
well known [12] that such circuits can only reach expo-
nentially small subset of states.

Since we limit the evolution to polynomial time, there
exists a constant� such that the total number of gates in the
simulation circuit is bounded by K�, where K / N is the
number of qubits required for the simulation. There are no
more than Ncircuits ¼ ðMK2ÞK�

distinct ways of arranging
these gates into a quantum circuit (M possibility for each
gate and K2 possible pairs of qubits between which it can
be applied), and therefore no more than Ncircuits distinct
states that can be produced. On the other hand, the states of
K qubits live on a (2Kþ1 � 1)-dimensional hypersphere,

whose surface area is S ¼ 2�2K=�ð2KÞ, and an " ball
around a given state is a (2Kþ1 � 2)-dimensional hyper-

sphere of volume V ¼ 2�2K�1"2
Kþ1�2=�ð2KÞ. Combining,

we see that the " balls of physical states occupy only an

exponentially small fraction NcircuitsV
S ¼ OðKK�2

K Þ of the

total volume in Hilbert space. Thus, the overwhelming
majority of states in the Hilbert space of a quantum
many-body system can only be reached after a time scaling
exponentially with the number of particles.

Conclusion—We demonstrated that any time-dependent
local Hamiltonian can be simulated efficiently using a
quantum computer, independent of the frequencies in-
volved. As an application, we showed that the set of quan-
tum states that can be reached from a product state with a
polynomial-time evolution of an arbitrary time-dependent
quantum Hamiltonian is an exponentially small fraction of
the Hilbert space. This means that the vast majority of
quantum states in a many-body system are unphysical, as
they cannot be reached in any reasonable time. As a con-
sequence, all physical states live on a tiny submanifold, and
that manifold can easily be parametrized by all poly-sized
quantum circuits. Although quantum circuits are unitary
and do not directly simulate imaginary time evolution, the
counting argument we presented holds equally well in this
setting, and hence thermal and ground states of local
Hamiltonians are also efficiently parametrized by short

circuits. This raises the question of whether it makes sense
to describe many-body quantum systems as vectors in a
linear Hilbert space. The recent advances in real-space
renormalization group methods [3,23,24] indeed seem to
suggest that a viable approach consists of parametrizing
quantummany-body states using tensor networks and quan-
tum circuits.
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