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Probing the real time dynamics of a reacting molecule remains one of the central challenges in

chemistry. Here we show how the time-dependent wave function of an excited-state reacting molecule can

be completely reconstructed from resonant coherent anti-Stokes Raman spectroscopy. The method

assumes knowledge of the ground potential but not of any excited potential. The excited-state potential

can in turn be constructed from the wave function. The formulation is general for polyatomics and applies

to bound as well as dissociative excited potentials. We demonstrate the method on the Li2 molecule.
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For several decades now, femtosecond pump-probe
spectroscopies have been employed to study transition
states of molecules reacting on excited potential surfaces
[1–5]. Although these studies have shed a tremendous
amount of light on excited-state dynamics, none of the
methods in use provides complete information on the
excited-state wave function. The need for an experimental
method that will provide this information is compounded
by the fact that theoretical ab initio calculations for excited
states are difficult and of limited accuracy.

Several methods have been proposed for reconstructing
excited-state wave functions from spectroscopic signals.
Shapiro has suggested wave function imaging using the
excited vibrational eigenstates as an expansion basis [6].
The coefficients are obtained from spectroscopic informa-
tion and later used to reconstruct the excited potential,
from which the basis is obtained. Cina has suggested a
method of wave function reconstruction that assumes the
excited-state potential is known [7]. There have also been
various proposals for reconstructing excited-state poten-
tials from spectroscopic data [8–12]. Experimental work
has focused on wave packet interferometry of vibrational
wave packets [13,14] as well as electronic Rydberg wave
packets [15,16].

The approach we present here assumes knowledge of the
ground-state potential but not of any excited potential. Our
strategy is to express the molecular wave function j�ðtÞi as
a superposition of the vibrational eigenstates fjc gig of the
ground-state Hamiltonian:

j�ðtÞi ¼ X
g

jc gihc gj�ðtÞi � X
g

CgðtÞjc gi: (1)

Since the basis fjc gig is assumed known, the challenge is

to find the time-dependent coefficients CgðtÞ. Note that in
principle the approach is general for polyatomics.

Consider a two-state molecular system within the
Born-Oppenheimer approximation. The nuclear
Hamiltonians Hg and He correspond, respectively, to the

(known) ground and (unknown) excited potentials. For
simplicity, we consider a �-pulse excitation as well as a
coordinate-independent electronic transition dipole �
(Condon approximation). By applying first-order time-
dependent perturbation theory, the wave packet that we
want to reconstruct is [17]

j�ðtÞi ¼ �ie�iHetf��"1gjc 0i � i�"1jc ðtÞi; (2)

where the initial state jc 0i is the vibrational ground state of
Hg with the eigenfrequency !0, "1 is the amplitude of the

pulse, and t is the propagation time on the excited state.
(Here and henceforth we take @ ¼ 1.) Note that within a
proportionality constant the excited-state wave packet
j�ðtÞi is equal to jc ðtÞi ¼ e�iHetjc 0i, the vibrational
ground state of Hg propagated on He.

Substituting Eq. (2) into the middle expression in
Eq. (1), we obtain CgðtÞ ¼ i�"1cgðtÞ, where

cgðtÞ ¼ hc gjc ðtÞi ¼ hc gje�iHetjc 0i: (3)

Hence, the central quantities required for reconstructing
j�ðtÞi are the overlaps hc gjc ðtÞi. These overlaps have a

physical interpretation as the projections of jc ðtÞi onto the
basis of ground vibrational eigenstates: As the wave packet
moves on the excited-state potential, its shadow on the
ground-state potential is completely recorded in these
time-dependent projections. The rightmost expression in
Eq. (3) indicates that cgðtÞ has the form of a time correla-

tion function between jc 0i and jc gi. Such correlation

functions appear in the time-dependent formulation of
resonance Raman scattering [18]; however, the experimen-
tal resonance Raman scattering signal involves the absolute
value squared of the half-Fourier transform of the correla-
tion function, and hence the latter cannot be recovered
from that signal.
Fully resonant coherent anti-Stokes Raman scattering

(CARS) has been shown to be a powerful probe of ground
and excited electronic states properties [19,20]. In this
Letter, we show that the correlation functions fcgðtÞg may
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be completely recovered from femtosecond resonant
CARS spectroscopy, allowing complete reconstruction of
the excited-state wave packet. The formula for the CARS

signal produced by a three-pulse sequence is Pð3Þð�Þ ¼
hc ð0Þð�Þj�jc ð3Þð�Þi þ c:c: [21], where c ð3Þð�Þ is the

third-order wave function and c ð0Þð�Þ ¼ e�iHg�c 0.

Within the above assumptions, Pð3Þ takes the form

Pð3Þð�Þ ¼ ~"hc 0je�iHe�43e�i ~Hg�32e�iHe�21 jc 0i; (4)

where �ij ¼ �i � �j is the (positive) time delay between

the centers of the ith and jth pulses and �43 ¼ �� �3 with
� being the time of signal measurement. We have denoted
~Hg ¼ Hg �!0, ~" ¼ i3�4"1"2"3e

i!0ð�21þ�43Þ, with "1;2;3 as
the first, second, and third pulse amplitudes, respectively,

and � � ½�21; �32; �43�. In writing Pð3Þð�Þ as a complex
quantity, we have assumed the signal is measured in a
heterodyne fashion.

The physical interpretation of Eq. (4) is illustrated in
Fig. 1: A first laser (‘‘pump’’) pulse creates a wave packet
that evolves on the excited potential for time �21. It is this
wave packet that we wish to reconstruct. A second
(‘‘dump’’) pulse transfers part of this amplitude back to
the ground state, where it evolves for time �32. Finally, a
third pulse excites part of the second-order amplitude to the
excited state, generating the third-order polarization that
produces the CARS signal, measured after �43.

The wave packet jc ðtÞi [Eq. (2)] may be recognized in
the rightmost factors in Eq. (4); the question is how to
extract it. Since to reconstruct j�ðtÞi we need only the
correlation functions hc gje�iHetjc 0i, the problem reduces

to extracting the latter from Eq. (4). Introducing a complete

set of ground vibrational states,
P

gjc gihc gj ¼ 1̂, into
Eq. (4), we obtain the following suggestive formula for
the signal:

Pð3Þð�Þ ¼ ~"
X
g

e�i ~!g�32Pð3Þ
g ð�43; �21Þ; (5)

where Pð3Þ
g ð�43; �21Þ ¼ hc 0je�iHe�43 jc gihc gje�iHe�21 jc 0i

and ~!g ¼ !g �!0. Note that the desired correlation func-

tions are closely related to the square roots of the Pð3Þ
g ’s.

Thus, a general strategy for extracting the overlaps is clear:

The signal Pð3Þð�Þ is Fourier transformed along �32 to

resolve the individual Pð3Þ
g ’s. Then the square root of each

Pð3Þ
g is taken to obtain its corresponding cgðtÞ. The fcgðtÞg

are then used to reconstruct j�ðtÞi. The details of the
reconstruction are as follows.

1. Fourier transform Pð3Þð�Þ with respect to �32.—The

transformation is designed to resolve Pð3Þð�Þ into individ-

ual ground-state components fPð3Þ
g g [22]. Using the Fourier

convolution theorem we obtain a sinc type of spectrum
with peaks at the frequencies ! ¼ ~!g:

~P ð3Þð�43; !; �21Þ ¼
XN
g¼0

Sð!; ~!gÞPð3Þ
g ð�43; �21Þ; (6)

where Sð!; ~!gÞ ¼ 2T~"eið!� ~!gÞð ��32þTÞ sinc½ð!� ~!gÞT�,
2T ¼ �̂32 � ��32, and ��32 (�̂32) is the minimal (maximal)
value of �32. By fixing ð�43; �21Þ, Eq. (6) can be written as a
matrix equation:

~P ð3Þ ¼ SPð3Þ
g : (7)

2. Invert Eq. (7) to obtain Pð3Þ
g ð�43; �21Þ.—To do this we

need the matrix S to be square; we therefore choose the
number of frequency elements ! equal to the number of

~!g elements and calculate Pð3Þ
g ¼ S�1~Pð3Þ [23].

3. Take the square root of Pð3Þ
g .—Assuming the functions

fc gðxÞg are real, we can rewrite Pð3Þ
g as

Pð3Þ
g ð�43; �21Þ ¼ hc gje�iHe�43 jc 0ihc gje�iHe�21 jc 0i: (8)

Taking the square root of the diagonal of Pð3Þ
g ð�43; �21Þ (i.e.,

�43 ¼ �21 ¼ t), we recover the fcgðtÞg up to a sign:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð3Þ
g ðtÞ

q
¼ aghc gje�iHetjc 0i � h ~c gje�iHetjc 0i; (9)

where ag ¼ �1 and the sign of ~c gðxÞ is as yet undeter-
mined. By demanding continuity of the cross-correlation
functions (and their derivatives), the coefficients ag can be

regarded as time-independent. Substituting Eq. (9) instead
of cgðtÞ into the expression CgðtÞ ¼ i�"1cgðtÞ and using

the resulting CgðtÞ in Eq. (1) yields

j ~�ðtÞi ¼ i�"1
XN
g¼0

jc gih ~c gje�iHetjc 0i: (10)

The different sign combinations of ~c gðxÞ generate 2N

possible superpositions [24]. Only one out of the 2N

j ~�ðtÞi coincides with j�ðtÞi: the j ~�ðtÞi for which the

sign combination satisfies
P

gjc gih ~c gj ¼ 1̂.
4. Discriminating j�ðtÞi from the set fj ~�ðtÞig.—The set

of wave functions fj ~�ðtÞig are all consistent with the CARS
signal at a specific value of �43 ¼ �21 [25]. However, only

one j ~�ðtÞi is consistent with the signal derivatives. To see
FIG. 1 (color online). The pump-dump-pump CARS scheme.
�ðtÞ is the desired wave function.
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this, consider the nth derivative of the experimental signal
[Eq. (4)] with respect to �21:

@nPð3Þð�Þ
@�n21

¼ "yh��ð�43Þje�iHg�32 ~Hn
e j�ð�21Þi

¼ "y
X
g;g0

e�i!g�32Cgð�43ÞCg0 ð�21Þ ~Hn
e;gg0 ; (11)

where "y ¼ ð�iÞn�1�2"�1
1 "2"3e

i!0�41 , �41 ¼ �� �1,
~Hn
e ¼ ðHe �!0Þn, and ~Hn

e;gg0 ¼ hc gj ~Hn
e jc g0 i.

Substituting j ~�ðtÞi instead of j�ðtÞi into Eq. (11) gives

@n ~Pð3Þð�Þ
@�n21

¼ "y
X
g;g0

e�i!g�32agag0Cgð�43ÞCg0 ð�21Þ ~Hn
e;gg0 :

(12)

Accordingly, the j ~�ðtÞi for which @n ~Pð3Þð�Þ
@�n

21
¼ @nPð3Þð�Þ

@�n
21

for all

n is the reconstruction solution j�ðtÞi.
In practice, we proceed as follows. We invert the time-

dependent Schrödinger equation to calculate a set of po-

tentials from each j ~�ðtÞi:
~~VðxÞ ¼ 1

~�ðx; tÞ
�
i
@

@t
þ 1

2m

@2

@x2

�
~�ðx; tÞ; (13)

where m is the system’s reduced mass. One can show that

the potentials calculated by the j ~�ðtÞi that do not coincide
with j�ðtÞi are time-dependent [26]. Only the potential

calculated with j ~�ðtÞi ¼ j�ðtÞi is time-independent and
hence corresponds to the excited-state Hamiltonian He.
Thus, in order to find the correct wave function we use
the set of calculated potentials, as if they were time-

independent, to propagate the corresponding fj ~�ðtÞig
back to time zero. Of all the potentials, only the truly
time-independent one will propagate the corresponding

j ~�ðtÞi correctly back to jc 0i, and therefore this j ~�ðtÞi is
the correct wave function. Note that the above procedure
requires knowing the signal as a function only of �32 and
�21 ¼ �43.
To test our reconstruction methodology, we simulated

the CARS signal by calculating Pð3Þð�Þ for two systems.
The first is the Li2 molecule, with its ground (X) and first-
excited (A) electronic states as Morse-type potentials

VðxÞ ¼ Dð1� e�bðx�x0ÞÞ2 þ T. The second system, hence-
forth denoted d-Li2, has the Li2 ground state (X) but a

dissociative excited potential of the form VðxÞ ¼
De�bðx�x0Þ þ T (denoted ~A). The potential parameters are
given in Ref. [26]. The wave packet propagations em-

ployed in simulating Pð3Þ were performed by using the
split-operator method [27] on a spatial grid of 256 points
in the range of 2–12 a.u. with time spacing of 0.1 fs. We
used � ¼ 2 a:u: and "1;2;3 ¼ 10�4 a:u: For Li2, we in-

verted Eq. (7) for the first 25 peaks of ~P3ð!Þ, producing
25 Pð3Þ

g functions; for d-Li2, the procedure was performed

for the first 40 peaks, producing 40 Pð3Þ
g functions.

In Figs. 2 and 3, we present snapshots of the real part of
the reconstructed wave function for Li2 and d-Li2, respec-
tively. For Li2 (d-Li2) we superpose the first 25 (40)
eigenfunctions c gðxÞ by using the fcgðtÞg obtained by the

CARS analysis and maintaining
P

gjc gih ~c gj ¼ 1̂. The

reconstructed wave functions are seen to be in excellent
agreement with the exact ones, obtained by direct calcu-
lation of Eq. (2), for all propagation times.
Having determined the wave functions, we calculate the

corresponding excited potential from Eq. (13) by using
eight-point (three-point) central finite differencing for the
time (spatial) derivatives; the time step used was 0.2 fs.
Time steps of 0.5 fs gave very good results as well.
Figures 4 and 5 compare the reconstructed vs the exact

FIG. 2 (color online). Snapshots of the real part of the recon-
structed (circles, red) vs the exact (dots, blue) wave function, at
various times on the excited (A) potential (solid line) of Li2.

FIG. 3 (color online). Snapshots of the real part of the recon-
structed (circles, red) vs the exact (dots, blue) wave function, at
various times on the excited ( ~A) potential (solid line) of d-Li2.

FIG. 4 (color online). The reconstructed (circles, red) vs the
exact (dots, blue) A potential of Li2.
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potentials. The wave function (absolute value) used to
calculate the potential is shown by a black solid line.

In conclusion, we have presented a methodology for the
complete reconstruction of the excited-state wave function
of a reacting molecule by analyzing a multidimensional
resonant CARS signal. The methodology is general for
polyatomics and assumes that only the ground-state poten-
tial is known. The approach is very compelling since the
desired excited-state wave function is explicitly contained
in the formula for the CARS signal. Highly accurate re-
construction is obtained even far from the Franck-Condon
region. In fact, in practice the method may be more accu-
rate far from the Franck-Condon region, since the fre-
quency shift between the pump and dump pulses will be
more effective in discriminating unwanted processes
that may contribute to the measured signal at k ¼ k1 �
k2 þ k3. We simplified matters by considering �-function
pulse excitations, a coordinate-independent transition
dipole moment, and only one excited-state potential.
In future work we will test the removal of all these
assumptions.

We have shown that once the time-dependent wave
function is found, the excited potential can be recon-
structed with quite high accuracy. We are currently
applying the method to polyatomics, where obtaining mul-
tidimensional potential surfaces from spectroscopic data
has been one of the long-standing challenges of molecular
spectroscopy. An important application of excited-state
potential reconstruction will be the ab initio simulations
of laser control of chemical bond breaking. Experimental
laser control has been greatly hindered by the lack of
detailed theoretical guidance, which in turn is due to the
lack of accurate excited-state potentials. The present meth-
odology could have a significant impact in this field by
providing the necessary information about excited-state
potentials.
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