PRL 106, 170401 (2011)

PHYSICAL REVIEW LETTERS

week ending
29 APRIL 2011
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We propose a scheme for the creation of stable three-dimensional bright solitons in Bose-Einstein
condensates, i.e., the matter-wave analog of so-called spatiotemporal “light bullets.” Off-resonant
dressing to Rydberg nD states is shown to provide nonlocal attractive interactions, leading to self-
trapping of mesoscopic atomic clouds by a collective excitation of a Rydberg atom pair. We present
detailed potential calculations and demonstrate the existence of stable solitons under realistic experi-

mental conditions by means of numerical simulations.
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Self-trapped nonlinear waves and the possibility to create
“particlelike” wave packets have fascinated scientists over
the last decades [1-4]. In nonlinear optics, the creation of
stable three-dimensional bright solitons—so-called light
bullets** [5]—has been under active pursuit [4], but was
realized only recently in a discrete setting of waveguide
arrays [6]. One major obstacle stems from the fact that
nonlinear confinement usually comes hand in hand with
collapse instabilities [7]. In principle, this problem can be
overcome via nonlocal nonlinearities, where the nonlinear
self-induced potential at a particular point in space depends
also on the nearby wave amplitudes. While experiments
have established two-dimensional optical solitons in a con-
tinuous nonlocal medium (see, e.g., [8]), the realization of
their three-dimensional counterparts remains an elusive
goal. On the other hand, Bose-Einstein condensates
(BECs) have emerged as clean model systems to investigate
soliton formation [3,9,10], and, more recently, to study the
effects of nonlocal nonlinearities, as arising from dipolar
interactions [11]. Such interactions can give rise to stable
two-dimensional bright solitons [12], while the partially
attractive nature of dipolar interactions precludes stability
of three-dimensional solitons due to collapse [13].

In this work, we propose an experimental scheme for
the creation of ’matter-wave bullets,” i.e., stable three-
dimensional (3D) bright solitons in a Bose-Einstein con-
densate. The approach is based on optical dressing of a
ground-state atom BEC to highly excited Rydberg states
[14-16] (see Fig. 1). Within detailed potential calculations
for rubidium condensates we identify an appropriate range
of Rydberg states that provides attractive nonlocal non-
linearities, which do not lead to condensate collapse. We
present extensive 3D simulations of the underlying Gross-
Pitaevskii equation that demonstrate the emergence of
stable condensate bullets for realistic experimental pa-
rameters and scenarios of their creation. The calculations
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show that mesoscopic numbers of ultracold atoms can be
bound together by a single pair of strongly interacting
Rydberg atoms which is coherently shared throughout
the condensate (see Fig. 1). This exotic state—arising
from intricate coupling between internal and translational
atomic quantum dynamics—is shown to live over hundreds
of milliseconds and could, thus, provide the first realization
of 3D bright solitons in atomic BECs.

In the zero temperature limit the BEC wave function ¢
obeys the Gross-Pitaevskii equation (GPE)
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where N = (4| ) is the number of atoms, M denotes the
atomic mass and g = 47h?a/M describes the strength of

N :...| )(a) ()

- ]
Ryaberg )
laser o atomtc
Q BEC

—lg)

iha,¢=[—

FIG. 1 (color online). (a) Simplified level scheme of the con-
sidered Rydberg-dressing approach. The off-resonant coupling
of condensed ground state (|g)) atoms to strongly interacting
Rydberg states (|e)) gives rise to a stable bright soliton bound by
a rim of a collective quantum excitation of a Rydberg atom pair,
shown in (b). Depicted is a numerically obtained soliton formed
by dressing a Rb condensate to 65D/, Rydberg states with a
Rabi frequency ()/27 = 0.5 MHz and laser detuning A /27 =
32 MHz. Shown are half-maximum isodensity surfaces of the
BEC (inner red sphere) and the Rydberg-pair density (outer blue
shell), while the gray scale gives the interior density.
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local interactions due to s-wave scattering with scattering
length a. The range of the potential W greatly exceeds the
average interatomic distance, and, thus gives rise to the
nonlocal nonlinearity in Eq. (1). Let us first consider a
simplified, spherically symmetric potential of the form
Co
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Typical values of the parameters Cq <0 and R, will be
discussed below in our explicit calculations of the
dressing-induced interaction. As we will see, this generic
potential readily captures the essential physics of soliton
formation. Introducing appropriate length (R.) and time
(1 = R2M/n) scales, Eq. (1) can be reexpressed as
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This simple scaling shows that the BEC properties are
solely determined by two dimensionless parameters a =
—MNCg/h?R? and y = 47aN/R,, where (|) = 1. In
order to find approximate soliton solutions we first use a
Gaussian trial wave function of width o. Following stan-
dard variational analysis we find an implicit relation
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involving the interaction ratio 7 = y/a and the width of
condensate o. The integral Z = — [W(r — r')e T/
e /7’ dr'dr can be evaluated analytically in terms of
hypergeometric functions. In Fig. 2(a) we show the result-
ing existence curves for different values of the interaction
ratio 7). As expected, the condensate size is on the order of
R. and increases with increasing local repulsion.
According to the Vakhitov-Kolokolov criterion [17], the
stability of the solitons is expected to change at the minima
of the existence curves. This is confirmed by our numerical
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FIG. 2 (color online). (a) Existence curves for stable (thick
solid lines) and unstable (dotted lines) solitons for several n =
v/a and typical length scales of modulational instability (thin
blue lines) (b) Corresponding parameter regions for self-
trapping. The dots show numerical results using the potential
Eq. (5) for a Rb condensate with atom numbers N = 1000, 3000,
4850.

solutions of Eq. (3), which show that solitons on the left
branches are stable, whereas the right branches are un-
stable. Consequently, the minima mark the critical & above
which stable self-trapped solitons can exist. The corre-
sponding stability diagram is shown in Fig. 2(b). For
vanishing local repulsion (y = 0) this critical value is
found to be @ = 5.7, and it increases almost linearly
with 7y in the considered parameter range.

While this analysis yields a simple picture for the stabil-
ity conditions of self-trapped BECs, their dynamical for-
mation deserves some additional discussion. In particular,
we note that attractive kernels generally lead to long wave-
length modulation instabilities, i.e., an exponential growth
of periodic perturbations on a constant density background.
The wave number k,; of the periodic perturbation with
maximum growth rate gives the typical length scale A,; =
2ark ! of the unstable modulation. As shown in Fig. 2(a),
the soliton width o of the stable branch is significantly
smaller than k.;. Hence, there is a wide range of initial
condensate states with diameters smaller than A,,; and with
sufficiently large values of « to eventually form a stable
soliton.

Having established the general conditions for self-
trapping based on the simplified potential Eq. (2), we
now discuss its physical realization via off-resonant dress-
ing of ground-state atoms with high-lying Rydberg states.
Let us consider first the most simple case of a single
nondegenerate Rydberg state coupled to the atomic ground
state with a Rabi frequency {)/27 and laser detuning
A/27 [see Fig. 1(a)]. This admixes a small fraction v =
(Q/2A)* of Rydberg character into the atomic ground
states. For two distant atoms, this leads to an effective
interaction ~ v>Cy/r%,  arising from the strong
van der Waals interaction C¢/r° between Rydberg atoms.
At smaller distances r the doubly excited state is blocked
by the van der Waals shift [18], such that the effective
interaction saturates. Altogether, this yields an effective
potential of the type Eq. (2), where Cg = v*Cy and
R. = (—Cq/2hA)"/0 [14].

This scenario may be realized with nS, /, Rydberg states
of rubidium atoms. However, the van der Waals interac-
tions of alkaline atoms are entirely repulsive for highly
excited S states, such that the above scheme only produces
repulsive nonlinearities. We, therefore, resort to higher
angular momentum (nP; or nDj) states, accessible either
by single- or two-photon transitions. The underlying
Rydberg-Rydberg atom interactions are calculated by di-
agonalizing the two-atom Hamiltonian, which includes the
dipole-dipole coupling between Rydberg states. Since
there are (2J + 1) Zeeman degenerate Rydberg states
(m; = —J,—J +1,...,J) one obtains a set of (2J + 1)?

Vr(fd)(r) [see Fig. 3(a)] with respective
molecular eigenstates |u g(r)) [19]. For distances r larger
than the van der Waals radius R,qw [19] the potentials

behave like Vr(yﬁd) (r) ~ C(f ) /7%. The eigenstates depend on

potential curves
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FIG. 3 (color online). (a) Two atom level scheme for dressing to
65D3/, Rydberg states and Rydberg interactions ngd(r).
(b) Resulting single potential curve (7iz; = 3/2) for ¢ = Qaccord-
ing to Eq. (5). (c) Attractive and repulsive branches of interaction
strengths CéB ) vs n. For n = 59, all curves are attractive.

the interatomic distance r and on the angle 9 between the
molecular axis r and the quantization axis defined by the

coupling laser. Note that all of the potential curves Vr(fd) (r)
must be of negative sign. Already a single repulsive curve

would lead to resonant, simultaneous excitation of two

Rydberg atoms at a distance for which Vr(yﬁd) (r) = 2nA,
and cause rapid loss on a time scale ~100 us for typical
Rydberg states (see below). This requirement significantly
restricts the range of appropriate principal quantum num-
bers n and angular momentum states. We have performed
potential calculations for different Rydberg states of
Rubidium, and found nD; ) interactions to be most
favorable, as they yield entirely attractive curves for
n = 59 [cf. Fig. 3(c)].

The corresponding two-atom level scheme for dressing
to such Rydberg states is shown in Fig. 3(a). Upon proper
choice of laser polarization, the atomic ground state (|g) =
|551/2)) can be selectively coupled to a single m; state out
of the degenerate nDs,, manifold [cf. Figs. 4(a) and 4(b)],
denoted by |e) = |nDj;,(iit;)). Generally, the singly ex-
cited two-atom states (|ge), |eg)) are, however, coupled to
all molecular eigenstates |u g(r)), due to m mixing by the

dipole-dipole interaction D(r). The corresponding Rabi
frequencies ()5 = (ee|ug(r)){) are given by the overlap
with the laser-coupled Rydberg states, and thus depend on
the interatomic separation vector.

Assuming ) < A the corresponding two-atom
Hamiltonian can be diagonalized within fourth order per-
turbation theory. Omitting terms that do not depend on r,
one obtains a single anisotropic effective interaction
potential
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between two dressed ground-state atoms. This two-atom
calculation can be straightforwardly extended to the
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FIG. 4 (color online). Effective ground-state potentials [(c),
(d)] resulting from two-photon nDj, state dressing [(a),(b)] to
iy = 3/2[(a),(c)] and /i; = 1/2 [(b),(d)] Rydberg states, with a
two-photon Rabi  frequency Q/27 = (Q,Q,/28)/27 =
0.5 MHz and laser detuning A /27 = 32 MHz. The aspect ratio
of the resulting soliton is shown in (e) as a function of  for
iy = 3/2 (circles) and 7; = 1/2 (squares). The insets in (e)
show respective 3D soliton profiles [cf. Fig. 1(b)] for Q/27 =
0.3 MHz and 0.5 MHz.

N-atom case. As long as the total number of excited
Rydberg atoms N,y = (:1)>N < 1[20], this simply yields
>.i<jW(lr; — r;]) for the total potential energy of N atoms
at positions r; [14]. The mean field dynamics of the BEC is,
thus, governed by the GPE (1) and Eq. (5).

To further illuminate the physical mechanism behind the
observed self-trapping, let us consider the resulting many-
body states of the Rydberg-dressed condensate. From the
described perturbation theory we find that the second order
contribution to the many—body ground state

0% = 53 3o

. 6
322 |MB(,>1'[¢ (6)

V(,B)( U)

is a coherent superposition of Rydberg atom pair states,
whose correlation function drops to zero within a distance

for which Vr(yﬁg (r) = —2AA. This radius coincides with the

typical size of the self-trapped BEC, such that two atoms
are excited on opposite sides of the soliton. According to
Eq. (6), these pairs are coherently shared among all atoms,
resulting in a collective shell of Rydberg excitations
[cf. Fig. 1(b)]. It is the strong attraction between these
Rydberg atom pairs that self-confines the BEC.

In the following, we present explicit calculations for a
%"Rb condensate of N = 1000 atoms dressed to 65D3,
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FIG. 5 (color online). Self-trapped condensate dynamics after
instantaneous turn-on of the dressing lasers and sudden release
from a harmonic trap (@, = 170 Hz). The white lines give the
width of a freely expanding BEC. 65D;,, Rydberg states are
coupled with Q)/27 = 0.5 MHz and A/27 = 32 MHz.

Rydberg states with A/27 = 32 MHz, based on a 3D
integration of Eqs. (1) and (5). To ensure applicability of
our potential calculations, we consider Rabi frequencies
between 1 MHz and 3 MHz for which 0.006 = N4 =
0.06. Figures 4(c) and 4(d) show that due to the angular
dependence of the underlying Rydberg wave functions the
resulting interaction potentials are anisotropic [in contrast
to our isotropic model potential Eq. (2)], with a cylindrical
symmetry around the quantization axis (z axis). Con-
sequently, the resulting self-trapped ground states shown
in Fig. 4(e) are also slightly asymmetric. However, the
kinetic pressure as well as the local contact interaction
both tend to round out the soliton solutions, such that our
previous analysis using the simplified potential Eq. (2) is
expected to remain valid. In order to make quantitative
comparisons, we define an angular dependent radius R (1)
at which the potential Eq. (5) assumes half its minimum
value W(0) = —7Q*/8A3. For the chosen parameters this
radius is considerably larger than R, 4w = 3 wm, such that
the actual potential Eq. (5) closely resembles our model
potential Eq. (2). Using the average softcore radius
R, = 77! [T R.(9)sindd¥ as a natural length scale and
7= R2M/h to scale times, we obtain a dimensionless
GPE of the type of Eq. (3), with « = NQ*R2M /8hA>
and y = 47waN/R,. The numerically obtained critical in-
teraction strengths for soliton existence, shown in Fig. 2(b),
are in excellent agreement with the variational results
based on the simple model potential Eq. (2).
Experimentally, coherent Rydberg excitation of cold
atoms has been demonstrated under various conditions
[21]. Ideally, the preparation would start from a cylindri-
cally symmetric trap to initialize a BEC already close to
the solitary ground state. However, in order to demonstrate
robustness of the soliton, Fig. 5 shows the dynamics of a
significantly different initial condensate after sudden re-
lease from a spherical harmonic trap and simultaneous
turn-on of the dressing lasers. Compared to the undressed
BEC expansion, self-trapping becomes evident within
10 ms, manifested in stable oscillations of the condensate

size. On the other hand, the lifetime of the dressed BEC is
as long as several 100 ms, being predominantly limited by
the decay of the weakly admixed 6P/, state [14] [cf.
Figs. 4(a) and 4(b)]. A verification of the predicted self-
trapped ‘‘matter-wave bullets,” thus, appears to be well in
reach of current experimental capabilities.

In conclusion, we have shown that off-resonant dressing
of BECs to attractively interacting Rydberg states provides
a promising route for the first realization of stable self-
trapped three-dimensional bright solitons. While we chose
Rb(nD;/,) atoms as one relevant example, the proposed
scheme generally applies to Rydberg states of any atomic
species with sign-definite attractive van der Waals inter-
actions. Explicit potential calculations and numerical
simulations of the resulting GPE have been performed to
demonstrate experimental feasibility and to work out ap-
propriate parameters. In addition, we have shown that a
simple isotropic model potential captures the essential
physics of the observed soliton formation, which may be
useful for future theoretical studies on, e.g., 3D soliton
interaction or higher-order states [22]. The anisotropy of
the interaction together with its tunability may also open
up new routes to transfer angular momentum to the con-
densate [23].
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