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Ion Specificity and the Theory of Stability of Colloidal Suspensions
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A theory is presented which allows us to accurately calculate the critical coagulation concentration of
hydrophobic colloidal suspensions. For positively charged particles, the critical coagulation concentra-
tions follow the Hofmeister (lyotropic) series. For negatively charged particles, the series is reversed. We
find that strongly polarizable chaotropic anions are driven towards the colloidal surface by electrostatic
and hydrophobic forces. Within approximately one ionic radius from the surface, the chaotropic anions
lose part of their hydration sheath and become strongly adsorbed. The kosmotropic anions, on the other
hand, are repelled from the hydrophobic surface. The theory is quantitatively accurate without any
adjustable parameters. We speculate that the same mechanism is responsible for the Hofmeister series that

governs stability of protein solutions.
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All of biology is specific. The ion channels which con-
trol the electrolyte concentration inside living cells are
specific to the ions which they allow to pass. The tertiary
structure of proteins is sensitive to both the pH and to
specific ions inside the solution. It has been known for over
a hundred years that while some ions stabilize protein
solutions, often denaturing them in the process, others
lead to protein precipitation. In fields as diverse as bio-
physics, biochemistry, electrochemistry, and colloidal sci-
ence, ionic specificity has been known—and puzzled
over—for a very long time. It has become known as the
“Hofmeister effect” or the “lyotropic” series of electro-
lytes, depending on the field of science. The traditional
physical theories of electrolytes completely fail to account
for the ion specificity. The Debye-Hiickel theory of electro-
lytes and the Onsager-Samaras theory of surface tensions
treat ions as hard spheres with a point charge located at the
center [1]. The cornerstone of colloidal science, the
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of
stability of lyophobic colloidal suspensions, is based on
an even simpler picture of hard spherelike colloidal parti-
cles interacting with the pointlike ions through the
Coulomb potential. The DLVO theory showed that the
primary minimum of colloid-colloid interaction
potential—arising from the mutual van der Waals (disper-
sion) attraction—is not accessible at low electrolyte con-
centrations because of a large energy barrier. When the
electrolyte concentration is raised above the critical coagu-
lation concentration (CCC), the barrier height drops down
to zero, leading to colloidal flocculation and precipitation.
The DLVO theory, however, predicts that the CCC should
be the same for all monovalent electrolytes, which is
clearly not the case [2-5]. In fact, it has been known for
a long time that the effectiveness of the electrolyte at
precipitating hydrophobic colloids follows the lyotropic
series. For positively charged particles, the CCC
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concentration of sodium thiocyanide is an order of magni-
tude lower than the CCC of sodium fluoride. Even more
dramatic is the variation of the CCC with the sign of
colloidal charge. The CCCs predicted by the DLVO theory
are completely invariant under the colloidal charge rever-
sal. Therefore, changing the charge from, say, +0.04 to
—0.04 C/m? results in exactly the same CCC. This is
completely contradicted by the experiments, which find
that, under the same charge reversal, the CCCs can change
by as much as 2 orders of magnitude for exactly the same
electrolyte. Similar dramatic effects are observed for pro-
tein solutions for which some electrolytes are found to
“salt-in” while others ‘“salt-out” the same protein. In
view of the fundamental importance of ion specificity
across so many different disciplines, there has been a great
effort to understand its physical mechanisms [6-14]. A
successful theory should be able to quantitative predict
the CCCs of colloidal suspensions and shed new light on
the specific ion effects so fundamental to modern biology.
Construction of such a theory is the subject of the present
Letter.

Over the past 20 years, there has been a growing real-
ization that ionic polarizability—the effective rigidity of
the electronic charge distribution—plays an important role
in coding the ionic specificity [15-18]. The work on sur-
face tension of electrolyte solutions showed that near an
air-water interface ions can be divided into two classes:
kosmotropes and chaotropes [19,20]. The kosmotropes
remain strongly hydrated and are repelled from the inter-
face. On the other hand, chaotropes lose their hydration
sheath and redistribute their electronic charge so that it
remains mostly hydrated. This way, chaotropes gain
hydrophobic free energy at a small price in electrostatic
self-energy. For hard nonpolarizable ions of the Debye-
Hiickel-Onsager-Samaras theory, the hydrophobic forces
are just too weak to overcome the electrostatic self-energy
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penalty of exposing the ionic charge to the low dielectric
air environment, forcing these ions to always stay in the
bulk, contrary to simulations and experiments.

It is natural to ask if the same mechanism is also respon-
sible for the ionic specificity of the CCCs and for the
stability of protein solutions. The similarity between the
air-water interface and a hydrophobe-water interface, how-
ever, is not so straightforward [21]. The simulations find
that, contrary to the air-water interface, the mean water
density is actually /arger near a hydrophobic surface than
in the bulk [22]. On the other hand, the interfacial water is
“softer”” than bulk water, so that the hydration layer is very
compressible [22]. In particular, the simulations find that
the energy cost of placing an ideal cavity of radius « near a
hydrophobic surface is half that of having it in the bulk
[22]. For small cavities, the bulk energy cost scales with
the volume [21,23] as Uy = va’, where v = 0.3kzT
[24]. Moving an ion to the surface, therefore, gains
Uegw = —%a3 of hydrophobic energy. For kosmotropic
ions, this energy is too small to compensate the loss
of the hydration sheath and for exposing part of the ionic
charge to the low dielectric environment of the surface.
For highly polarizable chaotropic ions, the cavitational
energy gain compensates the electrostatic energy cost,
since these ions can shift most of their electronic charge
to still remain hydrated. Furthermore, if there are no water
molecules between an ion and a surface, dispersion
interactions—resulting from quantum electromagnetic
field fluctuations—come into play. Dispersion forces are
strongly attenuated by water. For example, the Hamaker
constant for polystyrene in water is 7 times lower than it is
in vacuum [25]. The London-Lifshitz theory predicts that
the dispersion interaction between an ion and a surface
decays with the third power of separation and is propor-
tional to the ionic polarizability. Although there is no
exponential screening of dispersion force by the electro-
lyte, in practice, it is very short ranged and is relevant only
for chaotropic ions in almost a physical contact with a
hydrophobic surface; see Fig. 1.

We shall work in the grand-canonical ensemble. The
colloidal particles will be treated as planar surfaces of
surface charge density o with the electrolyte in between.
To account for the curvature we will use the Derjaguin
approximation [25]. The static dielectric constant of the

Colloidal Surface

|@YI

o2
<9
@

8>@@

&>
) 13
Colloidal Surface

(OleY

FIG. 1 (color online). Illustrative representation: While the
chaotropic ions lose part of their hydration sheath near a hydro-
phobic surface and become adsorbed, the kosmotropic ions are
repelled from the surface by the hydration layer.

medlum (water) is €,. The Bjerrum length is defined as
= Bq?*/e,, Where B = 1/kgT,and is 7.2 A, in water at
room temperature. The system—two plates with an elec-
trolyte in between—is in contact with a salt reservoir at
concentration pg. The number of cations and anions
N per unit area in between the surfaces, as well as their
spatial distribution, will be calculated by minimizing the
grand-potential function. Note that we do not require the
charge neutrality inside the system—the external electro-
Iyte will screen the excess charge. Of course, if the system
is in vacuum, the charge neutrality will be enforced by the
formalism developed below.
The grand potential per unit area is
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where x is the distance measured from midplane, L is the
separation between the plates, p(x) are the ionic concen-
trations, A = gN_ — gN, — 20 is the deviation from the
charge neutrality inside the system, and U-(x) are the
interaction potentials between the ions and the surfaces.
The first two terms of Eq. (1) are the entropic free energy,
the third term is the electrostatic energy inside the system,
the sixth term is the electrostatic penalty for violating the
charge neutrality, and the last term accounts for the work
that must be done against the pressure of reservoir. The
electrostatic penalty (sixth term) is calculated by using the
Debye-Hiickel equation (linearized Poisson-Boltzmann
equation) and accounts for the screening of the excess
charge by the external reservoir. The inverse (screening)
Debye length of the reservoir is «, = /8mAgpg. The
equilibrium values of N. and the density profiles p.(x)
are determined by numerically minimizing the grand-
potential function. By using the Gauss law, the electric
field is E(x) = 4”" [ilp+(x") — p_(x")]dx'. Minimizing

the grand—potentlal function for a fixed N, we find

N O — q. — x)eBad0=BU-(
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where the electrostatic potential is ¢(x) = — [§ dx'E(x'),

O is the Heaviside step function, a are the hydrated or
unhydrated (bare) ionic radius, depending on whether the
ion is a kosmotrope or a chaotrope. Substituting the ionic
densities into Gauss’ law yields an integral equation for the
electric field which is then solved numerically. We proceed
as follows: For a trial number of cations and anions, N.,
we calculate the electric field and the ionic density profile.
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Once these are obtained, we substitute them back into the
free energy functional (1). The trial values of N.. are varied
until the minimum of the grand potential is found. In
practice, we couple the integral equation solver to a mini-
mization subroutine.

The van der Waals interaction between two surfaces is
given by [25] H(L) = —A},/127L?, where A}, is the
Hamaker constant for polystyrene in water [25]. To ac-
count for the finite radius of colloidal particles, we use the
Derjaguin approximation [25]. The total interaction poten-
tial between the two latex spheres of radius R, is then
U(L) = 7R, [ dI[Q(]) — Q(o0) + H(])].

We begin by studying the colloidal suspensions with
sodium salts of kosmotropic anions: 105, F~, BrO3, and
CI™. For these salts both cations and anions are strongly
hydrated and are repelled from the colloidal surface. Since
the static dielectric constant of latex is less than that of
water, in addition to the hard-core repulsion at contact, the
ions also feel a repulsive charge-image interaction. To
explicitly calculate this potential one needs to resum an
infinite number of images. This can be done by using the
theory developed in Ref. [26], which yields the ion-image
interaction potential W;,,(x).

For kosmotropic ions the latex-ion interaction potential
has a particularly simple form—hard-core repulsion at one
hydrated ionic radius from each surface plus the ion-image
interaction. The hydrated radii were taken from
Nightingale [27] and are the same as used in our previous
work on surface tensions [19,20]. The interaction potential
between the two colloidal particles, U,,, can now be
calculated; see Fig. 2. The potential has a primary mini-
mum at L = 0, followed by an energy barrier. The CCC is
defined as the concentration pg for which the barrier goes
down to zero. In Table I, we present the calculated values
of the CCC for positively charged colloidal suspensions
and compare the theoretical results with the experimental
measurements. A very good agreement between the
theory and experiments is found without any adjustable
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FIG. 2 (color online). Particle-particle interaction potentials in
units of kBT/A, for suspensions with sodium-halide salts. The
colloidal surface charge is 0.04 C/m?. The electrolyte concen-
tration is pg = 20 mM. While suspensions containing NaF,
NaCl, and NaBr at this concentration are stable—there is an
energy barrier for the primary minimum—suspension with Nal
is unstable.

parameters. To further test the accuracy of the theory, we
have calculated the CCC for negatively charged colloidal
particles with o = —0.061 C/m? in a suspension with
NaCl [3]. In this case the experimental value of the CCC
was found to be 140 mM, while we obtain 134.2 mM.

For chaotropic anions the situation is significantly more
complicated. As mentioned earlier, these ions can shed
their hydration sheath and adsorb to the colloidal surface,
gaining hydrophobic free energy. In addition, diminished
hydration leads to strong dispersion interaction between
latex and a chaotropic anion. The London-Lifshitz theory
predicts that the ion-particle dispersion potential has the
form Ugs(x) = Bl; /21+x)3 + /217X)3], where B is the con-
stant related to ionic excess polarizability and the ioniza-
tion potential, as well as the dielectric properties of
polystyrene and water. Unfortunately, these quantities are
not known. However, we can get a reasonable approxima-
tion for B by using a simplified Hamaker theory [25].
Within this approximation we find B = 2A.;a/9, where
Aq¢ 18 the effective Hamaker constant for a metal-
polystyrene interaction and « is the ionic polarizability
[18]. In vacuum, using a standard relation for Hamaker
constants, we obtain A%; = /A, Ay, Where A, and A,
are the constants for metal-metal and polystyrene-
polystyrene interaction, respectively, resulting in Ay =
17.776 X 10720 J. On the other hand, if the ion is fully
hydrated, Al = ‘/AgbAgm, where Ap, and Ap, are the
Hamaker constants for metal-metal and polystyrene-
polystyrene interaction in water [25], yielding AY, =
6.245 X 10720 J. A chaotropic ion near a latex surface,
however, is only partially hydrated, so that the effective
Hamaker constant should be intermediate between AY;
and Ay, which we take to be the arithmetic average
Aerr = (Ay + Aliy) /2.

As the ion moves away from the surface, it creates an
additional cavity from which water molecules are ex-
cluded. This once again carries a hydrophobic free energy
cost. Since the volume of this new cavity is small, we can,

TABLE I. Comparison between the calculated CCCs and the
experimental values. The colloidal surface charge density is
+0.04 C/m? from Ref. [5]. Judging from the spread of experi-
mental data, the experimental error is approximately =10 mM.

Tons Theory (mM) Experiments (mM)
10; 79.5 85 [5]

F~ 78 80 [5]
BrO3 71.7 *

Cl™ 70 70 [51, 90 [3]
NOj 31 36 [5], 35 [3]
Cloy 25.08 *

Br™ 24.3 45 [5]
ClO, 20.9 *

I~ 14.8 18 [5]
SCN™ 8.625 12 [5], 27 [3]
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once again, use the volumetric scaling of the cavitational
free energy to estimate its cost. This solvophobic free
energy will grow linearly as BUy,(x) = —va’ /2 +
(3/4)va®> (L —x —a_) up to the maximum separation
5a_/3 from the surface, after which distance it will be
zero—the cavitational energy will take its bulk value.

Thus for chaotropic ions, in addition to the ion-image
interaction, the solvophobic and the dispersion energies
must be taken into account: U_(x) = W, (x) + Uy, (x) +
Ulis(x). Finally, unlike the kosmotropes—which are lim-
ited by their hydration—the chaotropes can come to the
colloidal surface up to one bare ionic radius. The ionic
radii and polarizabilities for I", NO3, Br~, ClO5, and
ClO, are the same as used in our previous work on surface
tensions [19,20]. The CCCs are once again obtained by
requiring zero energy barrier for the primary minimum.
Table I compares the theoretical predictions with the ex-
periment. The good agreement in this case, however, might
be fortuitous considering the crudeness of our treatment of
the dispersion interaction. In order to test that this is not the
case, we have calculated the CCC for a sodium-nitrate salt
in suspension of negatively charged colloidal particles of
o= —0.061 C/mz, the CCC of which is known experi-
mentally to be 170 mM [3]. The present theory predicts
163 mM, suggesting that the good agreement between the
theory and experiment is not a coincidence.

The case of thiocyanide SCN™ is somewhat more com-
plicated since this ion can not be modeled as a sphere but is
rather a cylinder of radius 1.42 A and length 4.77 A [28].
The transverse polarizability of SCN™ is taken to be 3.0 A’
[29]. It is energetically favorable for this ion to be adsorbed
flat onto colloidal surface. The cavitational energy can be
calculated similarly as above. With these parameters we
find that SCN™ is very strongly adsorbed at the colloidal
surface; see Table 1. Finally, we note that, for negatively
charged hydrophobic surfaces, the CCCs follow the re-
versed Hofmeister series. For example, for a suspension
of particles with & = —0.04 C/m? the CCCs range from
70 mM for 105 to 239 mM for SCN™. Unfortunately, no
experimental data are available in this case.

We have presented a theory which allows us to quantita-
tively predict critical coagulation concentrations. For posi-
tively charged particles, the CCCs follow the Hofmeister
series. The only significant deviation is Br™. If the experi-
mental data are correct, this would suggest that the values of
polarizability for halogen ions quoted in the literature are
overestimated. This seems to be consistent with the recent
conclusions of ab initio simulations [30]. For negatively
charged particles, the Hofmeister series is reversed. In view
of the success of the present theory, it is now reasonable to
hope that a fully quantitative understanding of the
Hofmeister effect for protein solutions might be in sight.
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