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Magnetic and dielectric properties with varying magnitude and direction of magnetic-field H have been
investigated for a triangular-lattice helimagnet Mnl,. The in-plane electric polarization P emerges in the
proper screw magnetic ground state below 3.5 K, showing the rearrangement of six possible multiferroic
domains as controlled by the in-plane H. With every 60° rotation of H around the [001] axis,
discontinuous 120° flop of the P vector is observed as a result of the flop of magnetic modulation vector
g. With increasing the in-plane H above 3 T, however, the stable ¢ direction changes from ¢|[{110) to
qll{110), leading to a change of P-flop patterns under rotating H. At the critical field region (~ 3 T), due
to the phase competition and resultant enhanced ¢ flexibility, the P vector smoothly rotates clockwise
twice while the H vector rotates counterclockwise once.
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Multiferroics, materials endowed with both dielectric
and magnetic orders, have attracted revived interest [1].
While the coupling between these orders is weak in gen-
eral, recent discoveries of magnetically induced ferroelec-
tricity in several frustrated helimagnets [2,3] have enabled
giant magnetoelectric (ME) response, i.e., magnetic (elec-
tric) control of electric polarization P (magnetization M).
So far, mainly two microscopic mechanisms have been
proposed as the origin of coupling between helimagnetism
and ferroelectricity [4,5]. When a ligand ion is placed on
the center of two magnetic ions, spin-induced local electric
polarization p,; is described as

Pij = Aé; X (S; % §j) + Bl(¢;; - S)S; — (€ - §J)§,]
()

Here, A and B are coupling constants both related to spin-
orbit interaction, and ¢; ;18 a unit vector connecting the two

spins §i and S ;. The first term represents the inverse
Dzyaloshinskii-Moriya (D-M) mechanism, and explains
the emergence of P perpendicular to magnetic modulation
vector in transverse (cycloidal) helimagnets such as
TbMnO; [6]. The second term comes from the spin-
dependent modulation of hybridization between metal-d
and ligand- p, and has been elucidated to host P parallel to
magnetic modulation vector in some longitudinal (proper
screw) helimagnets such as CuFeO, [7] with triangular
lattice. In the former scheme, (§l~ X S’j) denotes a vector
spin chirality perpendicular to the spin-spiral plane, and
tends to orient parallel to the applied magnetic field H. The
rotation of H may lead to the rotation of spin-spiral plane
and hence the P direction, while satisfying the relationship
P 1 H. Such concomitant rotation of the P and H vectors
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with the same period has been demonstrated experimen-
tally in several transverse helimagnets such as RMnO;
[6,8] and Ba,Mg,Fe,0,, [9]. Here, we report on the
new phenomenon, the continuous rotation of the P vector
under rotating A with different rotation periods.

Ferroelectrics with high symmetry in crystal lattice, e.g.,
the triangular lattice (TL), can host multiple ferroelectric
(FE) domains with P along the equivalent crystal axes.
When the ferroelectricity is induced magnetically in such a
lattice, versatile ME responses via the domain rearrange-
ment are expected [10]. It was recently reported [11] that
the discontinuous 120° flop of P can be induced for every
60° rotation of H in the TL helimagnet CuFe;_,Ga, O,
as a result of the H-induced domain redistribution. In this
Letter, we have investigated the ME properties for the TL
helimagnet Mnl,. We proved the FE nature of the heli-
magnetic ground state, in which the in-plane H was found
to induce the rearrangement of six possible multiferroic
domains. Moreover, the in-plane H above 3 T induces the
magnetic phase transition to another helimagnetic phase
with a different magnetic modulation vector. In the critical
field region (~ 3 T), we found that the in-plane P vector
smoothly rotates clockwise twice while the H vector ro-
tates around the [001] axis counterclockwise once. The
origin of this unique ME response is interpreted as the
H-induced directional change of magnetic modulation
vector with enhanced flexibility under the competition
between two helimagnetic phases.

Mnl, crystallizes in the Cdl, type structure with cen-
trosymmetric space group P3m1 [Fig. 1(d)], where each
atomic element forms the TL stacking along the [001]
axis in the order of -(I-Mn-I)-(I-Mn-I)-. Magnetism is
dominated by the Mn?" ion with §=5/2, and this
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compound undergoes three successive magnetic phase tran-
sitions at 3.95 (Ty1), 3.8 (Ty»), and 3.45 K (Ty3) [12,13].
The proper screw magnetic structure is realized in the
magnetic ground state below T3, where spins rotate within
the plane perpendicular to the magnetic modulation vector
k ~ (0.181, 0, 0.439) [Fig. 1(f)]. Note that the k vector is
slanted off from the TL basal plane. Correspondingly, the
spin-spiral plane is also canted from the plane including the
[001] axis. For simplicity, hereafter, we define g as the in-
plane component of the k vector. This compound has been
investigated mainly from the interest in magnetic and opti-
cal properties [12—14]. Here, we unravel that this com-
pound shows also intriguing ME properties.

Single crystals of Mnl, were grown by the Bridgman
method. Because of the moisture sensitivity of Mnl,, han-
dling of the samples was done in an argon gas-filled glove
box. The crystal was cleaved along the planes perpendicu-
lar to the [001] axis, and cut into a rectangular shape with
the end faces perpendicular to the [110] axis or the [110]
axis. Silver paste was painted on the chosen surfaces as the
electrodes. P was deduced by the time integration of the
polarization current measured with a constant rate of tem-
perature (T) sweep (0.5 K/ min) or H rotation (2°/ sec).
To enlarge the portion of a specific P domain, the poling
electric field (E = 60 ~ 100 kV/m) was applied in the
cooling process and removed just prior to the measure-
ments of polarization current. Dielectric constant € was
measured at 100 kHz using an LCR meter. M was mea-
sured with a SQUID magnetometer.

Figs. 1(a)-1(c) show the T dependence of magnetic
susceptibility y, €, and P under various magnitudes of
H. Ppyjg) was measured in the warming process without
E after the field-cooling with E||[110], while applied H
was unchanged during both procedures. At a low magnetic
field (H = 0.1 T), y shows a clear anomaly with thermal
hysteresis at Tys ~ 3.45 K, signaling the onset of proper
screw spin order with ¢|[(110). Simultaneously, the [110]
component of € shows a peak structure and that of P
(Pri10)) begins to develop. The P direction can be reversed
with an opposite sign of poling E. These results suggest
that only the proper screw magnetic ground state, not the
intermediate magnetic phases between Ty; and Ty3, can
induce ferroelectricity. Note that almost no dielectric
anomaly is discerned along the out-of-plane ([001]) direc-
tion. This behavior can be justified from the viewpoint of
symmetry [7]: While the original crystal lattice holds
centrosymmetric 3m site symmetry at magnetic Mn>"
site [Fig. 1(d)], the proper screw magnetic order with
gll{110) breaks several symmetry elements to sustain
only the twofold rotation axis perpendicular to both the
g-vector and the [001] axis. Thus, the emergence of
P||[110] L g can be allowed [Fig. 1(f)].

At this stage the microscopic origin of the ME coupling
in Mnl, is not uniquely identified; the spin-dependent p-d
hybridization mechanism (the second term of Eq. (1)) may
be relevant, while the inverse D-M model can reproduce
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FIG. 1 (color online). (a)—(c) The T dependence of y, €, and P
under various magnitudes of H. (d) The (001) projection of a
triangular-lattice layer of Mn?" ions (large circles) and two
adjacent 1™ layers (small open or filled circles) located above
or below it. The symmetry elements at Mn site are also indi-
cated: reflection mirror (m), twofold rotation axis (2) and three-
fold rotation axis along the [001]-axis with inversion center
(a triangle with a small circle). (e) The crystal axes of Mnl,.
(f) The proper screw magnetic order with in-plane modulation
vector ¢||{110), which appears in low-H region. The remaining
symmetry element and the allowed P direction are also indi-
cated. (g) Six possible multiferroic domains with P|[{110).
Corresponding magnetic g vector and spin chirality (denoted
as R or L) are also indicated. (h) and (i) Favorable domain
distribution under various sets of E and H. (j)—(1) The analogous
diagrams for the proper screw magnetic order with g[|(110),
which emerges in the high-H region (see text).

High-H (P||q||{110))
. 2-

the observed P-direction due to the canting of the spin-
spiral plane towards the TL basal plane. We also measured
the T-dependence of P[;o; under various magnitudes of H
[Fig. 1(c)]. P[;10] vanishes above 6 T, indicating the mag-
netic transition from the helimagnetic to another magnetic
phase. In Fig. 3(b), the H-T phase diagram for H||[110]
determined from the various 7 or H dependence of M, e,
and P is indicated. The boundary of the FE phase always
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shows up also as the magnetic anomaly, which confirms the
strong correlation between ferroelectricity and magnetism
in this system.

According to the previous neutron diffraction study by
Cable er al. [12], Mnl, can host six equivalent heli-
magnetic domains with three possible ¢|[(110) and two
spin-chiral degrees of freedom. In general, the domains
generated upon a magnetic transition can be converted to
each other by the symmetry operation that is broken by the
magnetic order [10]. By considering the above-obtained
P||[110] L g relationship, it is suggested that six helimag-
netic domains directly correspond to six FE domains with
different P||[(110). The corresponding ¢ direction and spin
chirality for each P domain are depicted in Fig. 1(g). Here,
the reversal of spin chirality always gives the opposite
direction of P. Interestingly, Cable et al. [12] has demon-
strated that such helimagnetic domain distribution can be
controlled by the applied H (~ 1 T). Since antiferromag-
netically aligned spins are favored to lie within a plane
perpendicular to the applied H, the in-plane H should
develop the domain with P L g||H in the present case of
the proper screw spin state with ¢|[(110). Note that H
cannot lift the degeneracy of two spin-chiral states.
In contrast, the in-plane E is expected to select the spin
chirality because the sign of P is governed by the spin
chirality [Fig. 1(h)]. Thus, to obtain the single domain state
with P||[110], the simultaneous application of E|[[110] and
H||[110] will be required [Fig. 1(i)].

To check this possibility of H-induced rearrangement of
FE domains, we simultaneously measured both Pp; ;o) and
Ppyig) using two pairs of electrodes under H rotating
around the [001] axis. Here, both P and H can be expressed
as two-dimensional vectors within the (001) plane.
Hereafter, we define 6p (6y) as the angle between the in-
plane P(H) direction and the [110] axis. Figs. 2(a)-2(c)
show P[11q}, P110) and 6p as functions of 65, measured at
H =23 T without E. The specimen was cooled with
H||[110] and E||[110] prior to the measurement to obtain
the uniform initial domain state as shown in Fig. 1(i); the
success of this procedure was experimentally verified by
the observation of 6p = 90° at 8y = 0° (P L H). As 0y
increases, the P vector suddenly rotates its direction by
about 120° at @y = 30°. Then we obtain 0p = 330° at
0y = 60°, which again satisfies the P 1 H condition as
confirmed at 8y = 0°. Since H favors the domains with
P L gl|H in the proper screw spin state with ¢|[(110), the
presently observed H-induced flop of the P vector should
originate from the flop of the ¢ vector from ¢l|[110] to
gll[210]. Note that the ¢||[[210] state can have either
P|I[010] or P||[010] depending on the spin chirality, while
only the P|[[010] state is selected in this H-rotation
experiment. Such a g-flop transition with 120° flop of
the P vector is observed for every 60° rotation of H (i.e.,
at 8 = (30 + 60n)°). The development of P under rotat-
ing H is schematically illustrated in Fig. 2(d), where the
P L g||H relationship is always satisfied at 6, = (60n)°.
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FIG. 2 (color online). (a) [110] and (b) [110] components of P
simultaneously measured at 2.3 T as functions of the H direction
around the [001] axis. (c) Relationship between the directions of
P and H. Arrows indicate the direction of the H rotation.
(d) Schematic illustration of the observed development of the
P vector under rotating H. Corresponding data sets taken at 3 T
[(e)—-(h)] and 5 T [(i)—(1)] are also shown (see text).

We performed similar experiments at 5 T
[Figs. 2(1)-2(k)] [15]. While the 120° flop of the P vector
is again confirmed for every 60° rotation of H, this P flop
takes place at 6y = (60n)°, not at 65 = (30 + 60n)°,
unlike the case for 2.3 T. The observed P direction at 6 =
(30 + 60n)° for 5 T is schematically illustrated in Fig. 2(1).
For each selected 0y, P|| = H relationship is always sat-
isfied. This is in contrast with the case for 2.3 T, where
P 1 H relationship is favored. Interestingly, the present
P-flop pattern at 5 T [Fig. 2(1)] perfectly agrees with that
previously reported for CuFe,;_,Ga,O, [11] with the
proper screw spin order with ¢|[(110) [Fig. 1(j)] [16,17].
As discussed in Ref. [11], the proper screw spin order with
qll{110) occurring on the TL stacking [Fig. 1(d)] leaves
only 2’ (twofold rotation followed by time reversal) axis
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FIG. 3 (color online). (a) 6y dependence of y (= M/H)
measured with various magnitudes of H. (b) T-H phase diagram
for H applied parallel to [110], determined by various 7 and H
scans of M, €, and P. FE nature is observed in the shadowed
region. The transition point (denoted as X with a horizontal error
bar) separating the two screw magnetic phases with different ¢
vectors as indicated in Figs. 1(f) and 1(j) is determined from the
result of @y scans for P and M. Horizontal bars indicate a
provisional phase boundary.
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along ¢||[(110) unbroken, and allows the emergence of
Pllgll[110] [Fig. 1(j)]. Note here that the emergence of
P||g cannot be explained by the inverse D-M scheme, but
the observed FE nature has been ascribed to the spin-
dependent modulation of hybridization between metal-d
and ligand-p states via spin-orbit interaction [5,7,18,19].
This situation again allows the appearance of six FE do-
mains with P||[(110), and the corresponding ¢ vector and
spin chirality for each P domain are depicted in Fig. 1(k).
In this case, H favors the domains with g||P|| = H, and the
presently observed P-flop pattern at 5 T can be consistently
explained by assuming the H-induced ¢-flop transition
among ¢||{110). These results suggest that the stable mag-
netic structure in Mnl, under in-plane H ~5 T is the
proper screw with ¢l||[{110) [Fig. 1(j)], not that with
gll{110) [Fig. 1(f)] as in the lower-H region.

To confirm the change of stable g direction under in-
plane H, we measured 6 dependence of y (= M/H) with
various magnitudes of H [Fig. 3(a)]. Both at 1 T and at
3.3 T, the oscillations of y with the cycle of 60° were
observed. In general, ¢ flops take place at y-minimum
positions. While y takes minimal value at 6y =
(30 + 60n)° for 1 T, the y-minimum positions shift by
30° to appear at 6 = (60n)° for 3.3 T. This result supports
the above assignment, i.e., the change of stable ¢ direction
from ¢|[(110) to ¢|[(110) in entering the higher-H region.

We further measured the 6 dependence of Prpyg), Pyio)
and hence of 6p at H = 3 T, i.e., in the immediate vicinity
of the phase boundary between ¢|[¢(110) and g¢||{110)
phases [Figs. 2(e)-2(g)]. Unlike both cases for 2.3 and
5 T, the P vector shows a continuous rotation rather
than discontinuous flops, keeping the relationship 6p ~
(90° — 260y). Namely, the P vector smoothly rotates clock-
wise twice, when the H vector rotates counterclockwise
once. This is quite in contrast with the cases for other FE
helimagnets like Eu;_,Y ,MnOs, where P, H and the spin-
spiral plane rotates toward the same direction with the
same period leaving the ¢ vector fixed [8]. The observed
P directions with varying 6 are depicted in Fig. 2(h). Note
that the P profile at 3 T can be reproduced by taking the
summation of the P profiles observed at 2.3 [Fig. 2(d)] and
5 T [Fig. 2(1)]. Thus, the observed smooth rotation of P
likely reflects the directional change of the ¢ vector, with
enhanced flexibility at the phase boundary between two
competing helimagnetic phases characterized by either
gll{110) or ¢||{110). To clarify the evolution of the different
q domains under in-plane H, further investigation using
neutron scattering technique would be essential.

Finally, we briefly discuss the behavior of spin chirality
upon the H-induced g-flop transition. Comparing the
scheme in Fig. 1(g) with the observed feature [Fig. 2(d)],
we can see that the spin chirality is always preserved upon
the ¢ flop in the ¢||[{110) phase. Likewise, the comparison
between Figs. 1(k) and 2(I) suggests the preservation of
spin chirality in the ¢|[(110) phase as well. Since two spin-
chiral domains allowed for the specific g vector are

energetically degenerate at the P(q)-flopping H, the selec-
tion of one specific chirality upon ¢ flop is nontrivial and
perhaps reflects the difference in stability of two possible
multiferroic domain walls connecting domains with the
same or opposite spin chirality; the experimental fact is
that the multiferroic domain wall is formed so as to pre-
serve the spin chirality. Such behavior was also observed
for CuFe,_,Ga, 0O, with ¢|[(110) [11].

In summary, we have revealed the ferroelectric nature of
helimagnetic ground state in a triangular-lattice antiferro-
magnet Mnl,. Application of in-plane H was found to
induce the rearrangement of six possible multiferroic do-
mains, and every 60° rotation of in-plane H always leads to
120° flop of the P direction as a result of g flop. Above 3 T
emerges another multiferroic state, in which the stable ¢
direction alters from ¢||{110) to ¢|[(110), resulting in sig-
nificant change of P-flop patterns under rotating H. At the
critical field region (~ 3 T), the P vector smoothly rotates
clockwise twice, when the H vector rotates counterclock-
wise once. Such unique ME responses become possible via
the enhanced g-vector flexibility as a result of the field-
induced phase competition as well as via the spin-chirality
preserving multiferroic domain walls. The present results
demonstrate the potential of new approach to domain
control in multiferroics.
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