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We study a particle on a ring in presence of a dissipative Caldeira-Leggett environment and derive its

response to a dc field. We find, through a 2-loop renormalization group analysis, that a large dissipation

parameter � flows to a fixed point �R ¼ �c ¼ @=2�. We also reexamine the mapping of this problem to

that of the Coulomb box and show that the relaxation resistance, of recent interest, is quantized for large

�. For finite �> �c we find that a certain average of the relaxation resistance is quantized. We propose a

box experiment to measure a quantized noise.
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Two of the most important mesoscopic structures are
rings, for the study of persistent currents, and quantum dots
or boxes, for the study of charge quantization. Of particular
recent interest is the quantization of the relaxation resist-
ance Rq, defined via an ac capacitance of a single electron

box (SEB). Following the prediction of Büttiker, Thomas,
and Prêtre [1] that Rq ¼ h=2e2 for a single mode resistor, a

quantum mesoscopic RC circuit has been implemented
in a two-dimensional electron gas [2] and Rq ¼ h=2e2

has been measured. The theory has been recently extended
to include Coulomb blockade effects [3] showing that
Rq ¼ h=2e2 is valid for small dots and crosses over to

Rq ¼ h=e2 for large dots.

In parallel, recent data has observed Aharonov-Bohm
oscillations from single electron states in semiconducting
rings [4]. Further theoretical works have considered the
effects of dissipative environments on a single particle in a
ring [5], in particular, studying the renormalization of the
mass M� and its possible relation to dephasing [5–8].

It is rather remarkable that the ring and box problems are
related via the AES mapping [9] where the ring experi-
ences a Caldeira-Leggett (CL) [10] environment.While the
exact mapping assumes weak tunneling into the box with
many channels, it has been extensively used to describe
various tunnel junctions [11], the Coulomb blockade
phenomena in SEB and in the single electron transistor
(SET) [11–21].

In the present work we address the ring problem by the
real time Keldysh method and study it using a 2-loop
expansion and renormalization group (RG) reasoning.
We find that perturbation theory identifies an unexpected
new small parameter sinð @

2�Þ where � is the dissipation

parameter on the ring, or the lead-dot coupling in the
SEB. We infer that a large � flows to a fixed point
�R ¼ �c with @=2�c ¼ �. An intuitive argument for this
quantization is given before the conclusions. In
Monte Carlo studies [15,18] of M�, no sign of a finite
coupling fixed point has been detected. Our method

evaluates the response to a strictly dc electric field E,
equivalent to a magnetic flux through the ring that in-
creases linearly with time, hence a nonequilibrium re-
sponse. We claim that thermodynamic quantities like M�,
that are flux sensitive, decouple from the response to E, a
response that averages over flux values.
In terms of the SEB, our results extend the previous

analysis [3] to the case of many channels Nc [22]. We note
that for Nc > 1 the relaxation resistance for noninteracting
electrons becomes h=ð2Nce

2Þ [1]. We find that for strong
coupling, �=@ * 1 the relaxation resistance is quantized to

e2=h up to an exponentially small correction�e���=@. For
finite �, but still �> �c we find that a certain average of
the relaxation resistance is quantized [see Eq. (12) below].
We proceed to reexamine the mapping of the box and

ring problems. For the SEB one has the action

S ¼
Z
t

�X
�n

dy�nði@@t � ��Þd�n � EcðN̂ � N0Þ2
�

þ Slead þ Stun; (1)

where d�n are dot electron operators, n ¼ 1; . . . ; Nc labels

the channels, N̂ ¼ P
�nd

y
�nd�n, Ec ¼ e2=ð2CgÞ with Cg is

the geometric (bare) capacitance, N0 is proportional to
the gate voltage, Slead describes free electrons on the lead
and Stun is the tunneling between the lead and the dot.
We introduce an auxiliary variable �t with an action

Ec

R
t½N̂ � N0 � @ _�=2Ec�2 and rewrite the total action as

S ¼
Z
t

�X
�n

dy�nði@@t � �� � @ _�tÞd�n þ @
2 _�2t
4Ec

þ N0@
_�t

�

þ Slead þ Stun: (2)

In terms of fermion operators ~d�n ¼ ei�ðtÞd�n, integrating
out these fermions and expanding in Stun yields the well
known effective action for the SEB [9,11–13,15–20].
Equation (2) shows that the equivalent particle on a ring
has a mass M ¼ @

2=ð2EcÞ (the radius of the ring is chosen
as ¼ 1) and there is a flux (in unit of the flux quantum)
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�x ¼ �N0 through the ring. The tunneling amplitudes
squared, weighted by the number Nc of channels, become
the dissipation parameter � of the particle. The mapping
becomes exact in the largeNc limit at fixed � and for small
mean level spacing [23] � � Ec, a situation that can be
realized [22]; the application of this mapping is therefore
limited to the temperature range �< T � Ec.

Furthermore, by shifting @ _�t ! @ _�t þ 2EcðN̂t � N0Þ we

obtain @h _�ti ¼ 2Ec½hN̂iN0
� N0� and also a relation be-

tween response functions

@
2 ~Kt;t0 ¼ �2Ec@�ðt� t0Þ þ 4E2

cKt;t0 ; (3)

where ~Kt;t0 ¼ þi�ðt� t0Þh½ _�t; _�t0 �i is the response for the

ring while Kt;t0 ¼ þi�ðt� t0Þh½N̂t; N̂t0 �i is for the SEB.
The SEB response is parameterized as [3] e2

@
Kð!Þ ¼

C0ð1þ i!C0RqÞ where C0 is the effective dc capacitance

and Rq is the celebrated relaxation resistance [1]. The

corresponding ~Kt;t0 is the response to a change in the

external flux and is parameterized as

~Kð!Þ ¼ �K0ð�xÞ þ i!K1ð�xÞ þOð!2Þ (4)

and the persistent current from a time independent flux is

h _�ti ¼
R�x

0 K0ð�0
xÞd�0

x. The continuation to imaginary

time identifies the curvature of the free energy [5–8], or

an effective mass, as 1
@

@2F
@�2

x
¼ @=M�ð�xÞ ¼ K0ð�xÞ; e.g.,

without tunneling M� ¼ M while for large � the effective

mass M� � e��=@ is exponentially large.
Consider now the system in presence of a (classical)

electric field E, of Hamiltonian �H ring ¼ �ðEþ �EðtÞÞ�
and define the linear response �h�tiE ¼ R

t0 Rt;t0�Eðt0Þ to a
small perturbation �E. This response is studied below for a
dc field. In general its low frequency form is [see (8)
below] Rð!Þ ¼ �1

i!�RðEÞ which defines �RðEÞ as a renor-

malized dissipation parameter. Since E ¼ @ _�x we expect
@!2Rð!Þ ¼ ~Kð!Þ, hence the K0 term in Eq. (4) is not
reproduced. To resolve this discrepancy we note that an
additional constant flux �x in the total flux �x þ Et=@ can
be eliminated by redefining the origin of the time t, there-
fore the persistent current part should be eliminated.
More precisely, define @�xðtÞ ¼ Et; the 1st term in (4)
K0ð�xÞ ¼ K0ðEt=@Þ becomes a periodic function, i.e., an
ac response at !E ¼ 2�E=@. For a dc response at finite E
this persistent current response averages to zero, i.e.,R
1
0 K0ð�xÞd�x ¼ 0. The same reasoning applies to a �x

average on K1ð�xÞ. Hence the dc response to a dc field is
given by

lim
E!0

lim
!!0

~Kð!Þ
!

¼ i
Z 1

0
K1ð�xÞd�x: (5)

Therefore, @=�R ¼ R
1
0 K1ð�xÞd�x where we denote �R �

�RðE ! 0Þ. The order of limits in (5) signifies that �R is

essentially a nonequilibrium response. The physical pic-
ture is that in a dc field the particle rotates around the ring
and produces two types of currents. First is the persistent
current that oscillates in time as �x increases and is there-
fore time averaged to zero; this current is nondissipative.
Second, there is a genuine dc response from the i!K1 term,
which is dissipative.
In terms of the SEB response, using Eq. (3), we obtain

the following mapping of ring and box parameters as
functions of flux �x and N0:

M

M�ð�xÞ ¼ 1� C0ðN0Þ
Cg

;

@

�R

¼ e2

@

Z 1

0

C2
0ðN0Þ
C2
g

RqðN0ÞdN0;

(6)

and we note also that
R
1
0 C0ðN0ÞdN0 ¼ Cg.

At this stage we can already propose an interesting

experiment for the SEB. By analogy with E ¼ @ _�x in the
ring, we propose measuring the response to a gate voltage
that is linear in time N0 � t. This leads to a dc current into
the Coulomb box whose dissipation is the average in
Eq. (6). This average is predicted to be quantized, at least
for �> �c, as discussed below.
We proceed now to study the ring problem. To derive the

Keldysh action, we start from the well known action of a
particle in a CL environment [10] in two dimensions
with a position vector x�

t , where � correspond to the
upper and lower Keldysh contour, SK ¼ i

R
t;t0 x̂tR

�1
t;t0 xt0 þ

1
2

R
t;t0 x̂tBt;t0 x̂t0 and xt ¼ 1

2 ðxþ
t þ x�

t Þ and x̂t ¼
ðxþ

t � x�
t Þ=@. The simplest response function Rð!Þ, in

Fourier transform, and the noise function Bð!Þ, at zero
temperature, are Rð!Þ ¼ ½M!2 þ i�!��1, Bð!Þ ¼
@�j!j. This quadratic problem corresponds to a particle
of mass M and a friction � within a Langevin equation
M €xt þ � _xt ¼ �t; each component of �t ¼ ð�x

t ; �
y
t Þ is ran-

dom with correlations Bð!Þ.
We project now the position on a ring, i.e., x�

t ¼
ðcos��t ; sin��t Þ, and rewrite the action in terms of classical

and quantum angle variables �t ¼ 1
2 ð�þt þ ��t Þ and �̂t ¼

ð�þt � ��t Þ=@:
SK ¼ S0 þ Sint þ Sc;

S0 ¼ i
Z
t;t0

�̂tR
�1
tt0 ��t0 ¼ i

Z
t;t0

�̂tR
�1
tt0 �t0 � iE

Z
t
�̂t;

Sint ¼ 2

@
2

Z
t;t0

Bt;t0 sin

�
@

2
�̂t

�
sin

�
@

2
�̂t0

�
cosð�t0 � �tÞ;

Sc ¼ i�

@

Z
t
½sinð@�̂tÞ _�t� � @�̂t _�t��;

(7)

where t� is infinitesimal below t. A Gaussian term S0 has
been singled out so that a perturbation scheme in powers of
Sint, Sc can be defined. We have added an external electric
field E, hence the particle acquires a velocity v ¼ h _�ti as a
function of E. To perform a perturbation theory it is
convenient to introduce the bare velocity v0 ¼ E=� and
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to define �t ¼ ��t þ v0t. The derivative of the vðEÞ char-
acteristics is easily shown to be related to �RðEÞ via

dv

dE
¼ i

�Z
t0
_�t�̂t0

�
¼ lim

t�t0!1
Rt;t0 � 1

�RðEÞ ; (8)

where Rt;t0 ¼ ih�t�̂t0 i is the full response function defined

above. We note that the form (7) for SK has been derived
also for the SEB [9,11,12,20,21].

The semiclassical limit of (7), which corresponds to
small @=�, is obtained by linearizing the sine terms, and
is equivalent to a Langevin equation (also obtained for the
SET [24])

M €�t þ � _�t ¼ �x
t cos�t þ �y

t sin�t þ E (9)

which is in fact the 2D Langevin equation projected on the
tangent to the ring.

We perform a perturbative expansion of the action with
respect to Sint, Sc to compute �RðEÞ. The perturbative
expansion of �RðEÞ exhibits logarithmic divergences
when E ! 0. The velocity v0 thus provides a natural low
frequency cutoff for this divergences, and the mass pro-
vides a high frequency cutoff at !c ¼ �=M. The expan-
sion terms can be classified as n loops by looking at
the small @=� power of each term which is of order
R2n�1Bn=�2 � @

n=�nþ1. However, we find, due to the
periodicity of the action in the angle variables, that the
R2n�1 factors in front of the logarithmic terms become
periodic functions: The result up to two loops and Oðv0Þ is

1

�RðEÞ ¼
1

�
� 2

��
sin

�
@

2�

�
ln½v0=!

0
c� þ 4

�2
@
sin2

�
@

2�

�

� sin

�
@

�

�
fln2½v0=!

0
c� þ b0 ln½v0=!

0
c�g; (10)

where b0 ¼ Oð1Þ may weakly depend on � and
!0

c=!c ¼ 1þOð1=�2Þ. In the semiclassical limit of large
� one can reexpress (10) in terms of the small parameter
	 ¼ @

�� and 	R ¼ @

��RðEÞ and obtain the 2-loop 
 function

as �E@E	R ¼ 	2
R � b0	

3
R þOð	4

RÞ which has the equi-
librium form [13,14] if b0 ¼ �1. We show in Fig. 1 our
numerical solution for Eq. (9) with a reasonable fit to the
2-loop form with b0 ¼ 0. The full quantum theory (7)
including its nonequilibrium limit (5) differs from these
descriptions [13,14,21].

We consider now the quantum theory, beyond large �.
We note that in (10) g ¼ 2

� sinð @

2�Þ acts as an unexpected

small parameter for the expansion, since all divergences
vanish when g ¼ 0. It raises the interesting possibility that
g ¼ 0 be viewed as a RG fixed point. For that we need to
find a renormalized coupling which obeys multiplicative
RG, the simplest choice being gR ¼ 2

� sinð @

2�RðEÞÞ. The

question is then whether the 
-function 
 ¼ �E@EgR
can be written only in terms of gR. Although the non-
periodic 1=� factor in (10) appears at first problematic,
we propose that resummation from higher loops, which
allows for higher order terms Oð 1

�4Þ changes the 1-loop

term in (10) by @

2� ! sinð @

2�Þ, so that by taking a sine of

both sides it yields to order g3

gR ¼ g� g2 lnðv0=!
0
cÞ þ g3½ln2ðv0=!

0
cÞ

þ b0 lnðv0=!
0
cÞ�; (11)

where � refers to g ¼ 0 with cosð @

2�Þ ¼ �1, leading to


ðgRÞ ¼ 	g2R � b0g
3
R þOðg4RÞ.

To further motivate this proposal we consider the

response �Rt;t0 ¼ i 2
@
h�t sinð@2 �̂t0 Þi. Physically, e�ið@=2Þ�̂t0

corresponds to an electric field pulse �EðtÞ ¼ � @

2�ðt�
t0Þ or equivalently a rapid change of flux by � 1

2 , therefore
�Rt;t0 corresponds to the difference in response to these two

flux pulses. For �Rt;t0 the 1-loop term is fully periodic with
@

2� ! sinð @

2�Þ in Eq. (10). We note that there are many other

operators that have vanishing perturbations at g ¼ 0 to 2nd
order in Sint, Sc, e.g., the dissipation term in Eq. (7)

h�t sinð@�̂t0 Þi, or the response to an ac field with frequency

v h�t cos��t0 sin@2 �̂t0 i. We propose then that g ¼ 0 are exact

zeroes of the perturbation expansion and requiring an RG
structure leads then to the result (11).
Equation (10) yields fixed points at @

2�n
¼ n� with

n ¼ 1; 2; 3; . . . that are attractive at �> �n and repulsive
at �< �n; i.e., the flow of � � �n is always to smaller �.
At these fixed points a Gaussian evaluation yields the
correlation hcos�t cos�0i � t�2n. We recall now a theorem
for the lattice model [25] where the equilibrium action with
mass related cutoff is replaced by an action on a lattice
resulting in an XY model with long range interactions. The
theorem states [25] that hcos�t cos�0i � 1=t2; this result
was also derived in first order in � [8]. The range �> �1
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−3

FIG. 1 (color online). Velocity-field relation for Eq. (9) with
� ¼ 30@=�. The circles are numerical data, the full line is a 1st
order perturbation in 1=�, the dashed lower (red) line is its
logarithmic expansion for large lnv0=!c (v0 ¼ E=� being the
bare velocity) and the dashed upper (black) line includes the 2nd
order logarithmic term, corresponding to Eq. (10) for @ ! 0 and
b0 ¼ 0. The 2nd order terms are also shown in the inset after the

1st order is subtracted, i.e., Eð2Þ
�v ¼ E

�v � 1� @

�� ðlnv0

!c
� 1Þ.
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has an RG flow to �1 and is therefore consistent with the
theorem. The hypothesis of Gaussian fixed points corre-
sponding to n 
 2 is inconsistent with the theorem, i.e.,
hcos�t cos�0i becomes a relevant operator at the n � 2
points rendering them unstable. For �< �1 the system
may have non-Gaussian fixed points or a line of fixed
points as hinted by the small � perturbation [8]. Note
that in the SEB problem cos�t corresponds to a lead-dot
voltage and its correlations determine the SET conduc-
tance [9,11,19], while in the ring problem it corresponds
to fluctuations in the circular asymmetry.

The special value �R ¼ @=ð2�Þ has a topological inter-
pretation as a Thouless charge pump [26]. Consider a slow

change of �x by one unit with @ _�x ¼ �Rh _�i. For �R ¼
@=ð2�Þ the total change in the position of the particle isR
th _�idt ¼ 2�, i.e., the particle comes back to the same

position on the ring and a unit charge has been transported.
Such quantization requires a gap [26], though gapless cases
are also known [27,28]. The quantized �R also results from
arguing that there should be a unique frequency!E ¼ v as
E ! 0, as suggested by linear response.

We conclude that for �> �1 � �R the SEB satisfies
the quantization

Z 1

0

C2
0ðN0Þ
C2
g

RqðN0ÞdN0 ¼ h

e2
: (12)

In particular, when �=@ * 1 we have from the known

M�=M� e��=@ [5–8] and from Eq. (6) that C0=Cg ¼ 1þ
Oðe���=@Þ. We expect Rq to be independent of N0 at large

�, hence Rq ¼ h
e2
½1þOðe���=@Þ�, similar to the Nc ¼ 1

case [3].
The conductance for the ring can be defined by the

voltage around the ring 2�E=e and the current eh _�i=2�,
hence we expect the conductance for �> �R to be

Gring ¼ e2

4�2�R

¼ e2

h
: (13)

Finally, we reconsider the conditions for our proposed
box experiment. The field E should be sufficiently small so
that gR is sufficiently near the fixed point. For an initial
g � 1 integration of @gR=@ lnE ¼ g2R yields gR ¼
1= lnð@!c=EÞ � g. For example, for gR & 0:1 and a typi-
cal @!c � 1 meV one needs E=@ & 108 Hz. E=@ has fre-
quency units, corresponding to 108 electrons= sec flowing
into the box. We propose measuring the charge fluctuations

(noise) SQð!Þ ¼ e2hN̂tN̂t0 i! at a frequency, temperature

and level spacings � such that �<!, T � 108 Hz, to
yield the dc response (5) and (12). We predict then that the

noise SQð!Þð2Ec

e@ Þ2 1
! ¼ @

�R
¼ 2� is quantized.
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