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We study theoretically the role of quenched magnetic disorder at the surface of topological insulators by

numerical simulation and scaling analysis based on the massive Dirac fermion model. This addresses the

problem of Anderson localization on chiral anomaly. It is found that all the surface states are localized,

while the transverse conductivity is quantized to be � e2

2h as long as the Fermi energy is within the bulk

gap. This greatly facilitates the realization of the topological magnetoelectric effect proposed by Qi et al.

[Phys. Rev. B 78, 195424 (2008)] with the surface magnetization direction being controlled by the

simultaneous application of magnetic and electric fields.
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Bulk-surface correspondence has an essential role in a
large variety of phenomena in condensed matter physics,
such as ferroelectricity, diamagnetism, the Meissner effect,
and the quantum Hall effect. The topological magneto-
electric (ME) effect is a novel manifestation of bulk-
surface correspondence in which bulk magnetization is
generated by a circulating quantized Hall current flowing
at the surface of topologically nontrivial insulators, called
topological insulators (TIs) [1].

The electromagnetic response of a three-dimensional
(3D) TI can be described by the Lagrangian for the axion
electrodynamics [1–5],

L ¼ 1

8�

�
�E2 � 1

�
B2

�
þ

�
�

4�2

�
�E �B; (1)

where E and B are the electromagnetic fields, � and � are
the dielectric constant and magnetic permeability, and � ¼
e2=@c is the fine structure constant. The first term is the
conventional Maxwell term. The second term, called the
� term [6], characterizes the topological nature of three-
dimensional insulators: � ¼ 0 or � (mod 2�) correspond-
ing to ordinary insulators and topological insulators,
respectively. The � term is written as the total divergence,
and hence can be transformed into the surface Chern-
Simons term in a system terminated by a boundary.
When a topological insulator is surrounded by a ferromag-
netic layer, time-reversal (T) symmetry is broken, and the
value of � (more precisely r�) can be determined as
discussed in Refs. [3,4]. A circulating Hall current, induced
by an applied electric field [2,6,7] on the surface, is the
source of a bulk magnetization [3]. These features are
distinct from the conventional ME effect [4] which is a
long-term issue in the field of multiferroics.

Experimentally, however, there are several difficulties to
realizing this topological ME effect. (a) First, it is required
to get rid of the bulk carriers. (b) Second, one needs to

attach the insulating ferromagnetic layer with the magne-
tization normal to the surface all pointing out or in.
(c) Last, the Fermi energy must be tuned accurately within
the small gap of the surface Dirac fermion opened by the
exchange interaction. Otherwise, the description by Eq. (1)
is not justified. (a) is progressively realized [8], while (b)
and (c) seem still very difficult at the moment, even though
a recent experimental work shows that the gapless surface
Dirac states of the pristine topological insulator Bi2Se3
become gapped upon introducing magnetic impurities
(Mn and Fe) into the crystal [9]. Therefore, the topological
ME does not appear to be practical even though several
theoretical proposals have been made [3,10–17].
In this Letter, we study the effects of quenched magnetic

impurities or disorder on the surface of TI. In sharp con-
trast to conventional quantum Hall systems, all the surface
states are localized while the Hall conductivity is quantized

to be � e2

2h as long as the Fermi energy is within the bulk

gap. This resolves problem (c). Consequently, the gener-
ated magnetization is robust over randomness and univer-
sal. Furthermore, it is shown that this also resolves (b) with
the simultaneous application of magnetic and electric
fields parallel or antiparallel to each other. By this method,
surface magnetization can be controlled by the bulk en-
ergy, and hence can easily overcome the magnetic anisot-
ropy and Zeeman splitting at the surface.
We study the surface transport of a 3D TI based on the

2D massive Dirac model with various types of disorder.
The interaction between magnetic dopants and surface
electrons is described by the exchange Hamiltonian:

[10,11,14,15,18] H exc ¼ �J
PNimp

i¼1 Si � ��ðr� RiÞ. The
uniform part of the z component of local spins generates
a mass gap m � �Jnimp

�Sz in the surface spectrum [3],

where � ¼ ð�1; �2; �3Þ are Pauli matrices that act on the
electron spin degrees of freedom, Si and Ri are the local
spin operator and the position operator of the ith magnetic
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dopant, Nimp and nimp are the total number and the mean

sheet density of local spins. The surface Dirac modes can
be described by the Dirac Hamiltonian [1]:

H 2D
Dirac ¼ �i@vFẑ� � � rþm�3: (2)

On the other hand, an inhomogeneous part of the local
magnetization gives the disorder term V ¼P

3
�¼0 ��V�ðrÞ, where V1 and V2 have a role of random

vector potential, and V3 has a role of random mass poten-
tial. The scalar potential V0ðrÞ also could be introduced by
impurities or vacancies. Here �0 is a 2� 2 unit matrix.

In the clean limit, the Hall conductivity is quantized as

�xy ¼ �sgnðmÞ e22h when the Fermi level is in the middle of

the surface gap (jEj< jmj) [1,2,7,19,20]. The fact that �xy

is quantized even in the limit of m ! 0 is referred to as
parity anomaly [19]. When jEj> jmj, on the other hand,
�xy deviates from the quantized value, and vanishes at

jEj=jmj ! 1 as sketched in Fig. 1(c) [20].
We evaluate the diagonal and the Hall conductivity

of random massive Dirac Hamiltonian with the Kubo

formula [20] �abðLÞ¼� i@
L2

P
n;n0

fðEnÞ�fðEn0 Þ
En�En0

hnjjajn0ihn0jjbjni
En�En0þi� ,

where a, b ¼ x or y, ja is the current operator, and jni
denotes an eigenstate with its eigenvalue En of
Hamiltonian H 2D

Dirac þV . We work in the momentum

space by introducing a hard cutoff at a sufficiently large
momentum � [21,22]. Eigenstates and eigenvalues are
obtained by numerically diagonalizing the Dirac
Hamiltonian with disorder terms in the momentum space.
Random averaging is taken over typically 1000–10 000
disorder configurations. We use the Gaussian model
for disorder potentials which obey hV�ðqÞV	ðq0Þi ¼
��	g� expð�q2d2=2Þ�ðqþ q0Þ with �, 	 ¼ 0, 1, 2, 3.

We set g0 ¼ g1 ¼ g2 ¼ g3 as assumed in realistic situ-
ations [9] and the disorder strength so that the disorder
broadening energy is the order of the surface gapm as seen
in the density of states shown in Fig. 2(a).

The diagonal �xx and the Hall conductivity �xy are

shown in Fig. 2 for three different system sizes as a
function of E=m, E being the Fermi energy. The sign of
�xy is determined solely by the sign of the mass, no matter

whether the Fermi level resides in the electron region or
hole region. The size dependence indicates that �xx de-
creases while �xy increases as the size L increases. The

linear size of the system is characterized by the momentum
cutoff � or the mass gap m. Three system sizes shown in
Fig. 2 are L ¼ 75��1 ¼ 4@vF=m, 113��1 ¼ 6@vF=m,
and 176��1 ¼ 9@vF=m.
To see the tendency of �xy and �xx in the L ! 1 limit,

we plot (�xx, �xy) by changing the system size L in Fig. 3.

Although the system size cannot be widely changed be-
cause of the computational limitation, Fig. 3 indicates that,
with increasing system size, (�xx, �xy) flows and ap-

proaches to two fixed points (0, �1=2) in units of e2=h.
The scaling law of �xx and �xy has been originally studied

in the integer quantum Hall effect [23–25] with corre-
sponding fixed points (0, n) in units of e2=h, n being an
integer. In the present case with single-flavor Dirac fermi-
ons, a field theoretical study [26] shows that the values of
�xy shift by 1=2 from the conventional ones, consistent

with Fig. 3. The 1=2 shift results in a marked point, that is,
�xy ¼ 0 is unstable. This means that even if the surface

mass gap is, in principle, infinitely small, j�xyj increases
and approaches to e2=2h. This is a generalization of parity
anomaly to the case with disorder. This is in contrast to the
multi-Dirac-cone 2D lattice systems where mixing be-
tween different Dirac cones wipes out the Hall conductiv-
ity quantization [26].
When the system size exceeds the localization length,

the localization effect becomes important and �xy starts to

flow toward the two fixed points as shown above. The
maximum system size in the above analysis corresponds
to �0:2½�m� (with identifying � with the largest wave

number in the surface spectrum �0:2½ �A�1�) which is very
small compared to the realistic sample size and also to the
coherence length. We expect that in experimental situ-
ations the quantization of Hall conductivity should be
more prominent. In conventional quantum Hall systems,
recent experiments [27] explored the temperature driven

(a)                                                      (b)                           (c)Hind = (4π/c) jH
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FIG. 1 (color online). (a) Illustration of a magnetically doped
topological insulator with a cylindrical geometry. (b) Surface
massive Dirac dispersion. The Hall conductivity �xy is quantized

when the Fermi level lies in the surface gap. �xy deviates from

e2=2h when the Fermi level is out of the surface gap.
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FIG. 2 (color online). (a) Density of states, (b) Hall conduc-
tivity, and (c) diagonal conductivity of massive Dirac fermions
are shown as a function of the Fermi energy divided by the mass
gap E=m. Lines are guides for the eyes. System sizes are
L ¼ 4@vF=m, 6@vF=m, and 9@vF=m.
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flow diagram of �xx and �xy in a large-temperature range

from 4 K down to 40 mK. Similar scaling properties, but
different fixed points, are expected on a magnetically
doped surface of a topological insulator.

We note that even for states out of the original surface
gap, which were metallic in the clean limit, (�xx, �xy)

scales to the fixed points (0, �1=2). This means that all
the surface states are localized, while a transverse current
flows. It has been known, however, that in 2D electron gas
systems at least one extended state below the Fermi level is
required to realize the quantum Hall effect [23], otherwise
�xy vanishes. Since all states of disordered massive Dirac

Hamiltonian are localized in zero magnetic field, a finite
quantized Hall transport sounds enigmatic: what carries the
electric charges? In the following, we address this problem
based on bulk-surface correspondence.

Since all the surface states are localized by magnetic
disorder, the description by the � term in Eq. (1) is justified,
which corresponds to the magnetoelectric effect:

M E ¼
�
�

4�2

�
�E; PB ¼

�
�

4�2

�
�B: (3)

These results have been reproduced from the explicit
Wannier state representation of a topological insulator
[28–30]. Here � is only well defined as a bulk property
modulo 2�. The integer multiple of 2� can be specified
once we specify a particular way to make the boundary
with broken T symmetry. More appropriately, the current
and charge densities are given by

j ¼ cr�ME þ @PB=@t; 
 ¼ �r � PB; (4)

consistent with the half-integer quantized Hall surface
states, under the condition [3,6,16,29] d�=dz ¼
�xyð2�h=e2Þ�ðz� RÞ, where z ¼ R is at the surface

shown in Fig. 1(a) and the inset in Fig. 3. Since bulk
moments Eqs. (3) are protected by the bulk gap (when it
remains intact) and insensitive to disorder on the surface,
Eqs. (4) can survive even though all surface states are
localized. With the above results, the existence of the
surface quantum Hall states generalizes the axion electro-
dynamics effects to disordered systems. Precisely, the en-
ergy region for the topological ME effect, which was
originally limited in the surface gap, is enlarged to the
bulk gap by the localization effect of surface states. This
will greatly facilitate the experimental realization.
Even though the 2D surface Dirac Hamiltonian omits

such bulk properties by the construction, nonvanishing
half-quantized Hall conductivity is represented as a parity
anomaly. A similar situation can be seen in the context of
chiral anomaly. For the one-dimensional edge channel of
the quantum Hall system, the chiral anomaly represents the
current flow from or to 2D bulk region of the sample [31].
We note that the topological ME effect requires a finite

surface gap with an entirely definite sign of the mass,
otherwise there exists a massless one-dimensional channel
at the domain boundary separating different signs of the
mass [1,3]. In general, however, magnetic moments of
impurities could form a domain structure when tempera-
ture decreases down below the transition temperature
[10–15]. Simple situations are sketched in Fig. 4. There
are two (many in general) domain regions where the
surface magnetizations point alternative directions, one
S? > 0 (negative mass) and the other S? < 0 (positive
mass).
In the remaining part of the Letter, we propose a prac-

tical way to control domain structure using massive Dirac
surface states. First we assume that a magnetic field is
applied in the þz direction as shown in Fig. 4(a). For
simplicity, let us start with the pure case without disorder.
On the surfaces perpendicular to the magnetic field, the
Landau level structure is formed. When Fermi energy re-
sides in the mass gap (jEj< jmj), electric charge density

σxy

σxx

0

 0.5

 1

 1.5

-0.5 0  0.5

L=4 hvF/m
L=6 hvF/m
L=9 hvF/m

j = c XME

ME

FIG. 3 (color online). Scaling flow of �xx and �xy as increas-
ing system size, indicating ð�xx; �xyÞ ! ð0;�1=2Þ, in units of

e2=h, at L ! 1. Curves are guides for the eyes. Inset: The
surface Hall current is related to the bulk orbital magnetization
induced by an electric field.
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FIG. 4 (color online). Illustration of domain structures and
electromagnetic control of them. The domain wall is charged
in the case of (b).
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 ¼ �ðe2=2hÞB is generated on the top and bottom. The
sign of the charge depends on the sign of the mass and also
the direction of the magnetic field. By applying an electric
field in the z direction, the degeneracy between the right
and left regions is lifted, because of the electric polariza-
tion energy. In the positive mass region there is an energy
gain, while there is a loss in the negative region, as
estimated as

U� ¼ �
Z

d3x

�
�

4�

�
E � B

’ �1010ðE½V=cm�ÞðB½T�ÞðL½cm�Þ3½eV�; (5)

where B ¼ Hþ 4� �Mimp includes the contribution from

the bulk magnetization of impurities �Mimp, and L is the

linear size of the domain region. For this energy gain,
surface electrons in the right region are transferred from
top to bottom. This process requires larger U� than the
anisotropic energy [14] Uaniso=L

2 � 5� 1010½eV=cm2�
and the Zeeman energy UZeeman=L

2 � 109ðB½T�Þ�
½eV=cm2� to flip the surface magnetization (sign change
of the mass) in the right region. Typical strengths of
electric E� 103½V=cm� and magnetic fields B� 1½T� are
enough to flip and rearrange the surface magnetization. In
the case of strong disorder so that the Landau level spacing
is dominated by disorder broadening energy, the extended
states originally located at the center of each Landau level
levitate to a high (low) energy regime if its energy in the
clean limit was positive (negative) [32]. Eventually, only
localized states remain in the spectrum where �xy scales to

�e2=2h as shown above. In this case, the induced charge
density on the surface is 
 ¼ �xyB independent of the

Fermi level as long as it is within the bulk gap.
Consequently, as the domain wall moves, the positive
mass region dominates over the negative mass region,
and the uniform surface gap with a definite sign is attained,
where the Hall current can flow circularly. Once the uni-
form mass rearrangement is formed, the external fields E
and H can be gradually turned off. When the electric and
magnetic fields point in the x direction [see Fig. 4(b)], a
similar effect occurs. The surfaces with generated electric
charge are different but the direction in which domain
walls move is the same as in the case of Fig. 4(a).

In this work, we studied the effects of quenched mag-
netic disorder on the surface of a TI, based on the surface
Dirac model. Scaling analysis indicates that all surface
states are localized, while the Hall conductivity approaches
to the quantized value, even when the mass gap is smeared
by disorder broadening. Consequently the plateau width at
large system size and at low temperature is enhanced from
that in the clean limit. This helps the experimental realiza-
tion of the topological ME effect in a magnetically doped
TI. We also proposed a way to control domain structures of
surface magnetization by the simultaneous application of
electric and magnetic fields. The effective theory of TI
including magnetic impurities is an interesting and impor-
tant issue, which is left as a future subject.
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[14] A. S. Núñez and J. Fernández-Rossier, arXiv:1003.5931.
[15] D. A. Abanin and D.A. Pesin, Phys. Rev. Lett. 106,

136802 (2011).
[16] W.-K. Tse and A.H. MacDonald, Phys. Rev. Lett. 105,

057401 (2010); Phys. Rev. B 82, 161104 (2010).
[17] J. Maciejko et al., Phys. Rev. Lett. 105, 166803 (2010).
[18] S. A. Yang et al., arXiv:1011.4083v1.
[19] A. J. Niemi and G.W. Semenoff, Phys. Rev. Lett. 51, 2077

(1983).
[20] N. Nagaosa et al., Rev. Mod. Phys. 82, 1539 (2010).
[21] K. Nomura, M. Koshino, and S. Ryu, Phys. Rev. Lett. 99,

146806 (2007).
[22] K. Nomura et al., Phys. Rev. Lett. 100, 246806 (2008).
[23] A.M.M. Pruisken, The Quantum Hall Effect, edited by R.

Prange and S.M. Girvin (Springer, New York, 1987).
[24] D. Khmelnitsky, JETP Lett. 38, 552 (1983).
[25] B. P. Dolan, Nucl. Phys. B554, 487 (1999).
[26] P.M. Ostrovsky, I. V. Gornyi, and A.D. Mirlin, Phys. Rev.

Lett. 98, 256801 (2007); Phys. Rev. B 77, 195430 (2008).
[27] S. S. Murzin et al., Phys. Rev. B 72, 195317 (2005).
[28] A. Malashevich et al., New J. Phys. 12, 053032 (2010).
[29] A.M. Essin et al., Phys. Rev. B 81, 205104 (2010).
[30] S. Coh et al., Phys. Rev. B 83, 085108 (2011).
[31] N. Nagaosa and M. Kohmoto, Phys. Rev. Lett. 75, 4294

(1995).
[32] The massless case has been studied in detail in Ref. [22].

In the massive case, the critical state originally located at

the center of N ¼ 0 Landau level levitates to the higher or
lower energy region, depending on the sign of the mass.

PRL 106, 166802 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

22 APRIL 2011

166802-4

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://arXiv.org/abs/1008.2026v1
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1103/PhysRevB.83.125119
http://dx.doi.org/10.1103/PhysRevLett.58.1799
http://dx.doi.org/10.1016/0003-4916(82)90164-6
http://dx.doi.org/10.1016/0003-4916(82)90164-6
http://dx.doi.org/10.1103/PhysRevB.82.241306
http://dx.doi.org/10.1126/science.1189924
http://dx.doi.org/10.1103/PhysRevLett.102.156603
http://dx.doi.org/10.1103/PhysRevB.81.041102
http://dx.doi.org/10.1103/PhysRevLett.104.146802
http://dx.doi.org/10.1103/PhysRevLett.104.146802
http://dx.doi.org/10.1103/PhysRevB.82.161401
http://dx.doi.org/10.1103/PhysRevB.82.161401
http://arXiv.org/abs/1003.5931
http://dx.doi.org/10.1103/PhysRevLett.106.136802
http://dx.doi.org/10.1103/PhysRevLett.106.136802
http://dx.doi.org/10.1103/PhysRevLett.105.057401
http://dx.doi.org/10.1103/PhysRevLett.105.057401
http://dx.doi.org/10.1103/PhysRevB.82.161104
http://dx.doi.org/10.1103/PhysRevLett.105.166803
http://arXiv.org/abs/1011.4083v1
http://dx.doi.org/10.1103/PhysRevLett.51.2077
http://dx.doi.org/10.1103/PhysRevLett.51.2077
http://dx.doi.org/10.1103/RevModPhys.82.1539
http://dx.doi.org/10.1103/PhysRevLett.99.146806
http://dx.doi.org/10.1103/PhysRevLett.99.146806
http://dx.doi.org/10.1103/PhysRevLett.100.246806
http://dx.doi.org/10.1016/S0550-3213(99)00326-0
http://dx.doi.org/10.1103/PhysRevLett.98.256801
http://dx.doi.org/10.1103/PhysRevLett.98.256801
http://dx.doi.org/10.1103/PhysRevB.77.195430
http://dx.doi.org/10.1103/PhysRevB.72.195317
http://dx.doi.org/10.1088/1367-2630/12/5/053032
http://dx.doi.org/10.1103/PhysRevB.81.205104
http://dx.doi.org/10.1103/PhysRevB.83.085108
http://dx.doi.org/10.1103/PhysRevLett.75.4294
http://dx.doi.org/10.1103/PhysRevLett.75.4294

