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The consequences of several microscopic interactions on the photoemission spectra of crystalline

organic semiconductors are studied theoretically. It is argued that their relative roles can be disentangled

by analyzing both their temperature and their momentum-energy dependence. Our analysis shows that the

polaronic thermal band narrowing, which is the foundation of most theories of electrical transport in

organic semiconductors, is inconsistent in the range of microscopic parameters appropriate for these

materials. An alternative scenario is proposed to explain the experimental trends.
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Introduction.—It is now becoming possible to measure
angle-resolved photoemission (ARPES) spectra of organic
semiconductors (OSC) with increasingly high accuracy,
revealing intrinsic properties of conduction electrons in
these materials. Clear energy-momentum dispersions, in-
dicative of the formation of well-defined electronic bands,
have been reported in pentacene monolayers [1] and crys-
talline films [2,3] as well as rubrene single crystals [4].
Since photoemission probes the very nature of electronic
excitations, the measured spectra (in particular, their devi-
ations from noninteracting Bloch bands) provide direct
information on the interactions affecting the electron mo-
tion. Ultimately, such information could help establish a
proper microscopic model for the electron dynamics in
these materials. For this procedure to be viable, however,
one must be able to provide reliable predictions from the
theoretical side, identifying characteristic signatures of the
different microscopic phenomena at work.

In this work, we consider the effect of several micro-
scopic interactions that have been considered to play a role
in crystalline OSC: (i) the coupling of electrons to intra-
molecular vibrations; (ii) dynamical disorder originating
from thermal intermolecular motions; (iii) static disorder,
of both chemical and structural origin, giving rise to spatial
variations of the molecular site energies; and (iv) details of
the electronic structure, most importantly the features aris-
ing from the nonequivalence of the molecules in the unit
cell. On general grounds, these interactions can affect
either the band dispersion, the electronic lifetimes (i.e.,
respectively, the position and width of the ARPES peaks),
or both. In order to disentangle all these effects experimen-
tally, it is important to characterize their temperature de-
pendences: For example, (i) and (ii) can, in principle,
depend on temperature, via the thermal changes in the
phonon population, while (iii) and (iv) should be essen-
tially temperature-independent, being determined by the
structural characteristics of the sample. A similar assess-
ment can be made concerning their momentum and energy

dependence, i.e., how different interactions affect distinct
regions of the electronic spectrum. Our aim here is to
clarify and quantify these aspects by performing a reliable
calculation of the electronic spectral function in a con-
trolled microscopic model.
Model.—We consider the following Hamiltonian:

H ¼ Hð0Þ þHðiÞ þHðiiÞ þHðiiiÞ þHðivÞ þHðvibÞ; (1)

Hð0Þ ¼ �J
X
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Hð0Þ describes the tight binding motion of holes in a highest
occupied molecular orbital (HOMO) band that we take to
be one-dimensional for simplicity, reflecting the marked
anisotropy that is commonly observed in crystalline OSC.

HðiÞ and HðiiÞ are, respectively, the ‘‘Holstein’’ interaction
with intramolecular deformations Xj of frequency�0, with

coupling strength g, and the ‘‘Peierls’’ or ‘‘Su-Schrieffer-
Heeger’’ (SSH) interaction with molecular displacements
uj of frequency !0. These two interactions modulate,

respectively, the molecular energies and the intermolecular
transfer integrals. For the latter, we assume a linear
dependence on the intermolecular distance, fðuj �
ujþ1Þ ¼ J�SSHðuj � ujþ1Þ, with �SSH the coupling

strength. HðiiiÞ describes disordered site energies �j
obeying a Gaussian distribution of fixed width �, and
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HðivÞ an alternating potential �� reflecting a nonequiva-
lence of the sites in the unit cell, as is commonly observed

in OSC. HðvibÞ is the Hamiltonian for free harmonic vibra-
tions. In the following, we set @ ¼ kB ¼ 1 and express the
strength of the electron-vibration interactions by introduc-
ing the dimensionless parameters �H ¼ g=�0 and �SSH ¼
�2
SSHJ=ð2M!2

0Þ. Typical bandwidths in organic semicon-

ductors areW � 0:5 eV, corresponding to J � 0:125 eV in
our one-dimensional model. The microscopic parameters
that can be found in the literature are!0 ’ ð0:05–0:1ÞJ and
�0 ’ ð1–2ÞJ, with �SSH ’ 0:15–0:3 and �2

H ’ 0:2–0:5,
� ¼ ð0:1–0:3ÞJ, and � ¼ ð0:1–0:3ÞJ [1–11].

Method.—Owing to the low frequency of the intermo-
lecular vibrations that stems from the large molecular
mass, we have both !0 � J and !0 & T in the relevant
temperature range. In this regime the displacements uj in

HðiiÞ can be treated as a random field obeying a Gaussian
distribution, causing a statistical disorder in the intermo-
lecular transfer integrals [12]. The solution of all the terms

in Eq. (1) but HðiÞ therefore reduces to a problem of
noninteracting electrons in the presence of both ‘‘site-
diagonal’’ and ‘‘off-diagonal’’ disorder that can be effi-
ciently treated with the method described in Ref. [13].
Instead, the full quantum nature of the intramolecular

vibrations must be retained in HðiÞ, because T � �0. To
this aim we devise a method of solution that provides
reliable results in the case �0 * J, which includes the
moderate vibrational frequency regime of interest here:
�0 ’ ð1–2ÞJ. As we show below, this treatment of the
intramolecular electron-vibration interactions can be
straightforwardly implemented in the disordered environ-
ment provided by the remaining terms in the Hamiltonian.

The Green’s function of the problem can be defined in
the site representation as

Gi;j ¼
Z

�ldul�md�mPðuÞPdisð�ÞGi;jðu;�Þ; (6)

where PðuÞ / �l expð�u2l =2�
2Þ is the statistical

distribution of local displacements u ¼ fulg, with
�2 ¼ ½2M!0 tanhð!0=2TÞ��1, and Pdisð�Þ / �m

expð��2m=2�
2Þ is the distribution of local energies � ¼

f�mg. For a given set of intermolecular deformations and
disorder variables, the Green’s function of the electronic

problem Hel ¼ H �HðiÞ in the absence of the Holstein
term can be obtained as an inversion of a tridiagonal matrix
in the site representation: Gi;jðu;�Þ ¼ ½ð!�HelÞ�1�i;j
with [13]

!�Hel ¼
að0Þ0 b0 0 . . .

b0 að0Þ1 b1 . . .
. . . . . . . . . . . .
. . . 0 bN�1 að0ÞN

0
BBBB@

1
CCCCA: (7)

The interaction term HðiÞ is subsequently included at a
local level. In practice, we consider a thermalized

Holstein impurity at each site i, whose Green’s function
is defined as

GðiÞ
locð!Þ ¼ 1

ZH

�X1
n¼0

e�n�0=T

G�1
i;i ð!Þ ��em;ðnÞ

H;i ��em;ðnÞ
H;i

�
(8)

with ZH ¼ P1
n¼0 e

�n�0=T [we drop the indices (u and �) in
the following]. Here Gi;i is the local propagator obtained

from the inversion of the matrix Eq. (7), and �em;ðnÞ
H;i and

�em;ðnÞ
H;i are the local emission or absorption self-energies,

respectively, in the n-phonon propagator of the impurity.
These can be expressed as continued fractions [14]:

�em;ðnÞ
H;i ð!Þ ¼ ðnþ 1Þg2=G�1

i;i ½!��0�
� ðnþ 2Þg2=G�1

i;i ½!� 2�0�� �� � ; n� 0;

(9)

�abs;ðnÞ
H;i ð!Þ ¼ ng2=G�1

i;i ½!þ�0�
� ðn� 1Þg2=G�1

i;i ½!þ 2�0�� �� � ; n� 1;

(10)

the latter fraction obviously ending at the nth stage. To
evaluate the Green’s function Gi;jðu; �Þ of the full lattice

problem, we now invert Eq. (7) with the replacement

að0Þi ¼ !� ½Hel�i;i ! ai ¼ !� ½Hel�i;i � �H;i, where

�H;i ¼ ðGi;iÞ�1 � ðGðiÞ
locÞ�1 (11)

is the local self-energy of the Holstein-impurity problem at
each site i [the off-diagonal terms bi ¼ J þ fðui � uiþ1Þ
are kept unchanged]. This treatment of the Holstein
electron-vibration coupling has formally the same struc-
ture as the dynamical mean field theory [14] except for the

absence of a self-consistency loop. It reduces to the MAð0Þ

approximation of Refs. [15,16] at T ¼ 0, and, as inMAð0Þ,
it is most appropriate in the nonadiabatic regime �0 * J.
The above Eqs. (8)–(11) solve the Holstein interaction

problem for any given configuration of the diagonal and
off-diagonal disorder. The solution of the full Hamiltonian
Eq. (1) is obtained from Eq. (6) upon averaging over
50 000 realizations of disorder variables on a chain of
N ¼ 512 sites. The spectral function is Aðk;!Þ ¼
� 1

� ImGðk;!Þ, where Gðk;!Þ ¼ 1
N2

P
i;je

ikaði�jÞGi;jð!Þ is
the Green’s function in momentum space.
Results.—Figure 1(a) shows a photoemission spectrum

calculated with the above procedure for holes in a
one-dimensional HOMO band, ideally representing the
direction of maximum conduction in an organic crystal,
for a representative choice of parameters [slight changes in
the parameter values within the range indicated after
Eqs. (1)–(5) do not appreciably modify the scenario]. To
understand the results, it is instructive to analyze the differ-
ent terms in the Hamiltonian separately. We start from the

interaction with the intramolecular vibrations, HðiÞ, that is
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responsible for the most prominent features observed in the
spectrum. As is well known, in the case of isolated mole-
cules this term gives rise to ‘‘shakeoff’’ satellites of the
molecular levels, appearing at multiples of the vibrational
frequency�0 [5]. The number of visible satellites is set by
the coupling strength, Nvib ¼ �2

H, and is indicative of the
amount of vibrational quanta constituting the polaronic
deformation.

In a crystalline environment, the situation is more com-
plex. The molecular picture is recovered only when the
electronic band dispersion is small compared to the vibra-
tion frequency:W � �0. This, however, does not apply to
organic crystals, where, despite the arguably narrow band-
widths as compared to inorganic semiconductors,W is still
the largest energy scale in the problem. WhenW >�0, the
periodic overtones characteristic of molecular spectra are
replaced by cuts in the band dispersion. These features are
analogous to the ‘‘kinks’’ that are commonly observed in
the photoemission spectra of solids with sizable electron-
boson coupling. They add a vibrational fine structure to the
spectrum [17] without dramatically affecting the overall
bandwidth [14,15,18]. This phenomenon is clearly visible
in Fig. 1(a), where the cosine dispersion starting from the
top of the band is cut out by phonon resonances at �0 and
2�0 (indicated by arrows). In the case�0 � ð1–2ÞJ that is
relevant to OSC, the interaction with intramolecular vibra-
tions effectively splits the HOMO dispersion into two main
subbands separated by a sizable direct gap, as shown in
Fig. 1(b). The gap opens up where the dispersion crosses
the first vibrational cut, which falls accidentally around
k� �=2. This result can explain the large separation
between the two HOMO subbands of pentacene [2,3] that
is 1 order of magnitude larger than that predicted by
ab initio calculations on account of the structural non-
equivalence in the unit cell [10,19].

Figure 2(a) reports the lifetimes for states at different
points of the Brillouin zone (BZ). The large difference
between the HOMO1 and HOMO2 branches, that was
also observed in Ref. [2], is an additional distinctive

feature of the intramolecular interaction HðiÞ: According
to the arguments given above, the HOMO1 band lies by
construction below the threshold for the emission of a
vibrational quantum, j"k � "k¼0j<�0, and therefore the
electronic lifetime there is mostly insensitive to the effects
of intramolecular vibrations [14,15]. Vibronic scattering
processes are instead allowed in the second subband, where
they cause a much larger line broadening, with linewidths
of the order of the electronic transfer rate itself. Since only
the HOMO1 states near the band edge can be thermally
populated or doped in a field-effect device, we argue that
scattering from high-frequency vibrations should not play
a predominant role in the transport mechanism of OSC.

The effects related to HðiÞ are essentially temperature-
independent, because the considered vibrations cannot be
thermally excited in the relevant range T � �0. The tem-
perature dependence observed in Fig. 2(a) therefore arises
from other microscopic mechanisms present in the model.

While the static disorder HðiiiÞ can be excluded (it adds a
constant broadening / � to the spectral lines), the scatter-

ing from slow intermolecular lattice vibrations in HðiiÞ is
indeed strongly temperature-dependent: Because the lat-
tice motions are thermally excited for T * !0=2, the line-
widths increase linearly with temperature, which is indeed
observed in the HOMO1 sector of Fig. 2(a). Different
slopes arise at different points of the BZ because the
scattering from intermolecular lattice vibrations is mini-
mum at the band edges [13].
Finally, Fig. 2(b) illustrates the temperature dependence

of the calculated electronic bandwidths. The total HOMO
width (black dots) exhibits a moderate increase with
temperature that is entirely caused by the coupling to
low-frequency intermolecular vibrations: The thermal fluc-
tuations of the lattice structure lead to an average increase
of the transfer integrals given by J2av ¼ J2 þ �2

J, with
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FIG. 2 (color online). (a) Temperature dependence of the
spectral linewidths at different points in the BZ, for the same
parameters as in Fig. 1. (b) Widths of the individual subbands
and total bandwidth. Open circles are obtained by including the
lattice thermal expansion calculated in Ref. [24] (the bandwidth
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FIG. 1 (color online). (a) Spectral function Aðk;!Þ for a hole
in a HOMO band, calculated for J ¼ 0:125 eV, �SSH ¼ 0:2,
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�2
J ¼ 4�SSHJT for T * !0=2 [9,13,20,21]. The coupling

to low-frequency intramolecular vibrations, not consid-
ered here, would also lead to an analogous effect [22].
Importantly, this trend is inverted if one takes into account
the large thermal expansion coefficient characteristic of
organic crystals [open circles in Fig. 2(b)] [23]: Upon
heating, the lattice expansion leads to an effective reduc-
tion of the ‘‘bare’’ transfer integral J entering in Eq. (2)
[24]. The resulting bandwidth reduction quantitatively
agrees with the thermal band narrowing reported in penta-
cene [2,25]. This effect should not be confused with the
phenomenon of polaronic band narrowing [26], which is
the foundation of popular theories of electrical transport in
crystalline OSC, but is inconsistent with the parameter
range relevant to these materials.

In standard polaron theories [6,26,27] that build on the
molecular limitW � �0, the dressing of charge carriers by
fast molecular vibrations causes a renormalization of the
transfer integrals and a consequent reduction of the band-
widths, which is exponential in the phonon number Nvib.
Upon increasing the temperature, the ‘‘polaronic’’ band
further shrinks due to the increased population of molecular

vibrations, following W ! We�NvibðTÞ, with NvibðTÞ ¼
�2
H½1þ 2nBðTÞ� and nBðTÞ the Bose factor. For a measur-

able effect to be observed at room temperature, however,
one would require �0 & 1000 K ’ 90 meV. Such a value
is considerably smaller than the bandwidth and therefore
contradicts the molecular limit assumption.

In the regime of moderate coupling strengths and
�0 <W of interest for OSC, it is the very hypothesis of
an exponential renormalization that fails [15,18,22]. A
polaronic band can still be identified—it is nothing but
the HOMO1 band of Fig. 1—but its width is now of the
order of the vibration frequency �0 and not governed by
the textbook exponential relation. If we now focus on the
entire HOMO dispersion, the absence of polaronic band
narrowing is even more evident: With the present parame-
ters, one would predict a 30% polaronic reduction of the
bandwidth from the noninteracting valueW ¼ 4J, which is
clearly not observed in Fig. 1 [28]. The physical reason for
the failure of the conventional picture is that the molecular
degrees of freedom are not fast enough to rearrange during
the electron motion and therefore cannot provide the in-
stantaneous renormalization implied in the molecular
limit.

Concluding remarks.—The calculations presented here
show that the photoemission spectra of crystalline organic
semiconductors can differ significantly from the noninter-
acting band picture, reflecting a sizable coupling of the
conduction electrons with other degrees of freedom in the
system. The most salient features in the spectra come from
the interaction with high-frequency intramolecular vibra-
tions that causes the opening of apparent gaps in the
electronic dispersion at multiples of the vibrational energy
�0. However, such high-frequency modes are unable to

efficiently scatter the quasiparticle states at the lowest
binding energies. For this reason, the origin of the tem-
perature dependence of the mobility in these materials
cannot be explained by polaronic effects but should rather
be sought in the interaction with intermolecular vibrational
modes of much lower frequency, whose temperature-
dependent scattering rates are directly accessible in
ARPES experiments.
We thank A. Girlando for enlightening discussions.
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