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This Letter is a theoretical attempt to answer two questions. First how long does it takes for perfect

lensing to be observed, and second how does loss diminish the performance of a general perfect lens. The

method described in this Letter is universal, in the sense that it can be applied to perfect lenses of any

arbitrary geometry. We shall show that the dynamics of perfect lensing is equivalent to the dynamics of 2

coupled simple harmonic oscillators. Moreover we shall derive quantitatively, the effects of losses on a

compact perfect lens.
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In 2000, Pendry realized that a slab of material with
� ¼ � ¼ �1 would act as a ‘‘perfect lens,’’ enabling in
principle, images with unlimited resolution [1]. The power
of the perfect lens over conventional lenses, lies in its
ability to focus not only the light rays but also the evanes-
cent near fields. With the advent of transformation optics
[2], this simple slab lens could be generalized to lenses of
arbitrary geometry, further expanding the power of the
perfect lens. For instance, besides enhanced resolution,
lenses with compact geometry (compact perfect lenses),
can ‘‘supermagnify’’ objects embedded within to a size
much larger than the physical dimension of the lens [3].
Undoubtedly, the richness of the perfect lens has open up
many new applications previously inaccessible to conven-
tional optics. These range from subwavelength imaging
[4], strongly enhanced scattering [5,6], enhanced directiv-
ity of antennas [7] and even cloaking ‘‘at a distance’’ [8]
and casting optical illusions [9]. While these and many
other applications are fascinating, most if not all, the
current applications in literature are based on steady state.
In reality ‘‘perfect lensing’’ takes time to develop, hence it
is natural to ask the following: ‘‘How long does this take?’’
and ‘‘What are the effects of losses?’’ While these were
answered before by [10–12], the solutions obtained mainly
apply to the flat perfect lens. In view of this and the rich-
ness of the general perfect lens, we derive a more general
method applicable to lenses of any arbitrary geometry.

Since we are interested in the time evolution of the
compact perfect lens, we can broadly divide the space
into three regions denoted by I ¼ 1, 2 and 3, corresponding
to the space outside, within, and enclosed by the lens
[Fig. 1(a)]. Quantities Q (fields and permeabilities, etc.)
in a specific region I are denoted byQI. For our model, we
shall assume that region 1 is vacuum and region 3 is
designed to look transparent. To study the time evolution
we begin from Maxwell’s equation in frequency domain,

r� EI ¼ �i!�I �HI r�H ¼ i!�I � EI (1)

where �Ið!Þ, �Ið!Þ is the permittivity and permeability in
region I. Here the physical content of the evolution is

captured by the frequency dispersion of �2ð!Þ, �2ð!Þ.
For simplicity let us assume that �2ð!;xÞ ¼ �2ð!;xÞ, and

� 2ð!;xÞ ¼ �ð!;xÞ � �̂2ðxÞ (2)

where �̂2ðxÞ is the permittivity of the lossless perfect lens.
�ð!;xÞ is a function which captures the temporal disper-
sion of the permittivity. At the working frequency (! ¼
!0) of the lens, �ð!0;xÞ ¼ 1. Assuming that the temporal
dispersion is slowly varying with space ð�ð!;xÞ � �ð!ÞÞ,
and for small frequency deviation (! ¼ !0 þ �!), we can
expand this to first order, as �ð!Þ � ð1þ �Þ, where

� ¼ �! � @�ð!0Þ
@! ¼ �! � _�ð!0Þ [henceforth overdots imply

a derivative, i.e., _Qð�Þ¼@�Qð�Þ]. Effects of losses can also
be included by allowing � to be complex; � ¼ ð!�!0Þ �
_�ð!0Þ � i�; where � � 0 is the loss tangent.
In general the solution of the fields for the outermost

region is simple, since �1 ¼ �1 ¼ 1 (for some geometries,
these have well-known solutions). In contrast, the fields
within the lens generally are not easily solved. A perfect
lens with an arbitrary geometry may have a complicated
permittivity or permeability that is both anisotropic and a

FIG. 1 (color online). (a) Figure of a compact perfect lens.
Here the embedded object and its enlarged image is denoted by
the red font ‘‘A.’’ (b) Schematic of the simplification of BCs. The
various quadrants represents the type of materials involved. The
complex BC of a lossy dispersive perfect lens is translated to a
simplified BC with a ‘‘lossy dispersive vacuum.’’
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varying function of space [�2ð!;xÞ, �2ð!;xÞ], making the
solution of the fields within the lens highly nontrivial. This
is further complicated if we consider effects of temporal
dispersion and losses.

Fortunately this difficulty can be circumvented if we
make use of the symmetry properties of the field solutions
imposed by the perfect lens theorem (PLT) [3]. PLT states
that, a perfect lens can be viewed as an optical construct,
where fields within the lens (region 2) are a mirror copy of
the fields in the space (region 1) that the lens was designed
to see through. This implies that the complicated fields
within region 2 can be represented by its simpler image
fields in region 1. (These pair of fields or space are referred
to as complementary). This association of complementary
fields therefore implies that complicated boundary condi-
tions at the interface between region 2 and 3 can now be
translated to simpler boundary conditions embedded in
region 1. [See Fig. 1(b)]

Now the deviation of the permittivity (permeability)
�2ð!;xÞ from �̂2ðxÞ means that the fields in region 2 are
no longer complementary to vacuum in region 1; rather it

would be complementary to a ‘‘lossy dispersive material’’
given by PLT to be:

� 1ð!;xÞ ¼ �1ð!;xÞ � ð1þ �Þ: (3)

It is important to note that the permittivity given above in
(3) is still spatially invariant hence simpler to deal with
than (2). If we solved for the E field solution in region 1, for
some general set of coordinates given by fu; v; wg, these
can be written as a sum of eigenmodes where the m
eigenmode is given by f�m ð�juÞ; the ‘‘þ’’ and ‘‘�,’’ denote
the forward and backward waves, respectively; the first
argument indicates that these fields are propagating a
material given by (3), and the second set of arguments
are the coordinates (where u is the only variable, v, w are
constant). In this coordinate system, u ¼ uj (for some

constant uj; j ¼ �1, 0) corresponds to the boundaries of

the lens—u0 and u1 corresponds to the inner and outer
surface, and u�1 to the image plane or complementary
surface to u1. Applying the PLT, we then get the following
simplified boundary conditions (BCs):

fþm ð0j0Þ f�m ð0j0Þ
fþ0
m ð0j0Þ f�0

m ð0j0Þ

 !
k
:

1

Rm

 !
¼ fþm ð�j0Þ f�m ð�j0Þ

fþ0
m ð�j0Þ f�0

m ð�j0Þ

 !
k
:

cm

bm

 !
; u ¼ u0

fþm ð�j � 1Þ f�m ð�j � 1Þ
fþ0
m ð�j � 1Þ f�0

m ð�j � 1Þ

 !
k
:

cm

bm

 !
¼ fþm ð0j � 1Þ f�m ð0j � 1Þ

fþ0
m ð0j � 1Þ f�0

m ð0j � 1Þ

 !
k
:

Tm

0

 !
; u ¼ u1

(4)

where the arguments u0 and u�1 are replaced by numbers 0
and �1, respectively, for concision. The first rows of the
matrices in (4) are the E fields while the second are the H
fields [from (1)]—thus the primed superscript indicates
f�0
m ¼ ���1 � r � ðf�m Þ. The k sign in the subscript in-

dicates that each element of the matrix is projected onto the
u surface. For simplicity we shall assume this projection
and drop this sign. The elements of the column vectors, Tm,
Rm are the transmission and reflection coefficients for the
m eigenmode, while cm, bm are the outgoing and incoming
eigenmodes within the lens. Note in the simplified BC,
everything is written in terms of known solutions em-
bedded in region 1.

Now assuming small �, and retaining the lowest order
terms, we can solve (4) for Tm and Rm as:

Tmð!Þ � 1

�m

ðC�þ�1 ð0ÞCþ�
0 ð0ÞÞ

Rmð!Þ � 1

�m

ð _Cþþ
0 ð0ÞC�þ�1 ð0Þ � C�þ

0 ð0Þ _Cþþ
�1 ð0ÞÞ�

(5)

where �mð!Þ � C�þ
�1 ð0ÞCþ�

0 ð0Þ � _Cþþ
�1 ð0Þ _C��

0 ð0Þ�2,

here the various functions Ci are given by: C��
i ð�Þ ¼

½f�m ð�jiÞ; f�m ð0jiÞ� (for i ¼ 0, �1); the square brackets
imply ½a; b� ¼ ab0 � ba0. It is easy to check for � ¼ 0,
then Tmð!0Þ ¼ 1, Rmð!0Þ ¼ 0, which corresponds to loss-
less perfect lensing as expected.

Now, all the physics is captured by the analytic structure
of these transmission and reflection coefficients. Since the
poles of Tmð!Þ and Rmð!Þ, are given by the simple zeros of
�mð!Þ which is quadratic in !, there are two (complex)

poles given by !m� ¼ !0 � �m þ i�̂ where �̂ ¼
�= _�ð!0Þ and

�2
m ¼ 1

_�ð!0Þ2
:
C�þ�1 ð0ÞCþ�

0 ð0Þ
_Cþþ�1 ð0Þ _C��

0 ð0Þ : (6)

The <ð!m�Þ therefore, corresponds to the resonant fre-
quency of the lens, where the ‘‘þ’’ and ‘‘�’’ subscripts
refer to the higher frequency antisymmetric (ASPP) and
lower frequency symmetric (SSPP) surface plasmon polar-
iton modes, respectively. Thus, �m can be understood to be
the coupling strength between these modes.
Now (5) strictly holds for Tmð!Þ for positive !. We can

analytically continue this for negative ! if we take into
account that Tm, Rm as a function of time are real (the
reality condition)—that is Tmð!Þ ¼ T�

mð�!Þ, etc. Hence
the full Tm should be Tmð!Þ 	 1=½ð!�!m�Þ�
ð!�!mþÞð!þ!�

m�Þð!þ!�
mþÞ� where the first two

poles are for positive ! and the latter two are added on
for negative !. We can similarly impose reality on Rmð!Þ
and get the following coefficients:
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Tmð!Þ ¼ �ð2!0 ��mÞ2: 1

½ð!2
0 �!2Þ þ 2!0 ��m þ 2i!�̂�½ð!2

0 �!2Þ � 2!0 ��m þ 2i!�̂�

Rmð!Þ ¼ 2!0 ��m;1:
ð!2 �!2

0Þ
½ð!2

0 �!2Þ þ 2!0 ��m þ 2i!�̂�½ð!2
0 �!2Þ � 2!0 ��m þ 2i!�̂�

(7)

where all the ‘‘barred’’ complex quantities are defined as
��m ¼ <ð�mÞ þ i � !

!0
=ð�mÞ. The constant prefactor �m;1

in front of the zeros and poles is added on to satisfy the
condition that Tm, Rm in (7) are equivalent to the Tmð!>0Þ
Rmð!> 0Þ [Eq. (5) for !	!0].

If we do a time domain Fourier transform on (7) (replac-
ing i! with @t), and make the following correspondence:

xl !Eref:ðu¼ u�1;!Þ
xr ! ��m;1

��m

Etrans:ðu¼ u1;!Þ
f! 2!0 ��m;1Einc:ðu¼ u�1;!Þ;

(8)

the dynamics of a perfect lens is then equivalent to

€xl þ 2�̂ � _xl þ!2
0xl � 2!0<ð�mÞxr � 2=ð�mÞ _xr ¼ f

€xr þ 2�̂ � _xr þ!2
0xr � 2!0<ð�mÞxl � 2=ð�mÞ _xl ¼ 0;

(9)

which is the equation of motion for a system of 2 coupled
simple harmonic oscillators each with a natural frequency
of ! ¼ !0 (see Fig. 2). For large m, the fields are pre-
dominantly evanescent hence �m 	<ð�mÞ (since all Ci

would be real) and we can ignore the velocity dependent
coupling in (9). One can then easily see that (9) is exactly
equivalent to Gomez-Santos’ analysis of the flat perfect
lens [11].

Now the time evolution of the perfect lens can be easily
obtained from (9). When the incident electric field
Einc:ðu ¼ u�1; tÞ ¼ �ðtÞei!0t the transmitted electric field

will be given by: Etrans:ðtÞ ¼ AðtÞei!0t þ c � c, where the
envelope function AðtÞ (for large m) is given by:

AðtÞ ’
�

�2
m

ð�2
m þ �̂2Þ

�
½1� cosð�mtÞ expð��̂tÞ� (10)

where the term in the first bracket is the steady state
solution (as t ! 1) [equivalent to the transmission coeffi-
cient Tmð!0Þ] and the second term in the second bracket is
the transient term, a consequence of the beating between
the !m� normal modes.
The time it takes for an m eigenmode to be established

is inversely proportional to the coupling strength,
tm 	 1=�m. Since �m tends to fall off for larger m, this
implies that these larger m eigenmodes take a longer time
to be established. Consequently, since the smallest feature
the lens can resolve is �x	 1=m, this means the higher
resolution would take a much longer time to be developed.
In principle, knowing �m would tell us how long we have
to wait before the lens operates at a level where we can see
what we want to see. Consequently we can reduce this lag
time by selecting materials with smaller dispersion. In
addition with Eq. (10) we can also derive a criterion to
determine when losses would dominate and kill the perfect
lensing effect. This would occur when the denominator

term is dominated by losses—when �> _�ð!0Þ�m.
Substituting (6) into this criterion, we can define a critical
loss �m:

�2
m ¼ _�ð!0Þ2�2

m ¼
��������C

�þ�1 ð0ÞCþ�
0 ð0Þ

_Cþþ�1 ð0Þ _C��
0 ð0Þ

�������� (11)

where any loss �>�m would block the transmission of
thatm eigenmode. Since �m is a monotonically decreasing
function with respect to m, Eq. (11) also tells us the largest
m eigenmode that can be transmitted through—the largest
m ¼ mc satisfying �m > �; mc in turn would determine
the best resolution possible.
We can now compare our results with previous work on

the time evolution of the flat perfect lens. The obvious
coordinate system to use is the Cartesian, fu; v; wg ¼
fx; y; zg, where u�1 ¼ �d, u0 ¼ 0. For TM polarization
the E field eigenmodes given by f�m ð�juÞ ¼ expð
kzzÞŷ
where kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � �ð!Þ�ð!Þ �!2=c2

p
with �ð!Þ ¼ 1þ�.

Substituting this into (6) we get (for large m), �m 	
2ð _�ð!0Þ�1 expð�mdÞÞ, exactly the same as the coupling
strength in [11]. Similarly from (11), the critical loss is
�m � 2 expðmdÞ, which tells us that for losses given by �,
mc 	 lnð�=2Þ=d. Since the limit of image resolution is

FIG. 2 (color online). Analogy between the perfect lens and its
mechanical analogue. An incident field at !0 would excite both
the SSPP and ASPP normal modes (with natural frequencies
given by !m� and !mþ) equally. The superposition of these
modes would result in a perfect reflectionless transmission
[Rmð!0Þ ¼ 0, Tmð!0Þ ¼ 1].
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given by �x	 2�=mc we can therefore show that for the
slab lens �x	 d=½2� � lnð�=2Þ� as derived by Smith et al.
[10] and Merlin [12].

For the cylindrical perfect lens, the obvious coordinate
system to use is the cylindrical polar, fu; v; wg ¼ fr; 	; zg,
where u�1 ¼ d1, u0 ¼ d2 and u1 ¼ d3 with d1 > d2 > d3.
For TE polarization the E field eigenmodes given by

f�m ð�juÞ ¼ Hð1Þ
m ðkrÞeim
ẑ and fþm ð�juÞ ¼ JmðkrÞeim
ẑ,

where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð!Þ�ð!Þp

!=c with � ¼ � ¼ 1þ �.
Substituting these into (11), we get

�2
m ¼ ðk20d1d2Þ2

½ _Jmðk0d1Þ; Jmðk0d1Þ�½Hð1Þ
m ðk0d2Þ; _Hð1Þ

m ðk0d2Þ�
(12)

This result can be easily compared with numerical simu-
lations of Tmð!0Þ as a function of loss � (Fig. 3), for a
cylindrical lens with outer and inner diameter given by
d2 ¼ 20, d3 ¼ 10, respectively (the image would be mag-
nified by d1=d3 ¼ 4� ). First we note that as asserted,
losses affect the transmission of larger m eigenmodes
more. Second, as an example, we can see from Fig. 3
that for �	 1:8� 10�3, mc ¼ 22. This translates to an
angular resolution of�	 ¼ 2�=mc or�x	 �=3. Together
with its inherent magnification, this means that a subwa-
velength object with size �=3 would cast a wavelength
size (4� �=3) image (Fig. 4) enabling it to be visible in
the far field. Such an image would take roughly 	60 ps
to be formed (calculation based on fishnet structure at
!0 ¼ 170 THz [13]).

In conclusion we have shown the analogy between a
general perfect lens with a set of coupled oscillators. From
this, we have a quantitative description of the mechanics of

the perfect lens, enabling us to determine how losses affect
the perfect lens. We can also determine the time required
for a particular resolution to occur, which is important in
sensing applications. In particular we can decrease this
delay by designing metamaterials with smaller dispersion.
Finally this formulation is universal in the sense that it
does not depend on the details of the lens.
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FIG. 4 (color online). Time evolution of an image (jEj field)
using a cylindrical perfect lens (losses, � ¼ 1:8� 10�3). The
object is a subwavelength (�=3) double slit. Without the lens, the
slits are not resolved. With the lens and enough time (	 60 ps;
calculation based on the fishnet structure [13]), a clearly resolved
and magnified (4�) image is formed.

FIG. 3 (color online). Graph of transmission coefficient
Tmð!0Þ as a function of loss � for the cylindrical perfect lens.
The curves are for various m eigenmodes ( labeled inset). Here
we can see that there is an excellent agreement between nu-
merics and the approximation [using (5)]. The critical losses �m

denoted in the graph, are given by the values of � where
Tmð!0Þ ¼ 0:5.
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