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The phonon spectrum of the high-pressure simple cubic phase of calcium, in the harmonic approxi-

mation, shows imaginary branches that make it mechanically unstable. In this Letter, the phonon spectrum

is recalculated by using density-functional theory ab initio methods fully including anharmonic effects up

to fourth order at 50 GPa. Considering that the perturbation theory cannot be employed with imaginary

harmonic frequencies, a variational procedure based on the Gibbs-Bogoliubov inequality is used to

estimate the renormalized phonon frequencies. The results show that strong quantum anharmonic effects

make the imaginary phonons become positive even at zero temperature so that the simple cubic phase

becomes mechanically stable, as experiments suggest. Moreover, our calculations find a superconducting

Tc in agreement with experiments and predict an anomalous behavior of the specific heat.
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The understanding of crystal lattice vibrations in terms
of phonons provides an excellent paradigm to interpret and
understand a wide range of physical phenomena [1]. In
most cases, the harmonic approximation describes accu-
rately phonon frequencies and the associated physical
properties. However, there are examples where experimen-
tally confirmed structures display imaginary phonons in
ab initio density-functional theory calculations, indicating
that in such cases anharmonicity cannot be neglected.
The high-pressure simple cubic (sc) phase of calcium is
an important example of the possible stabilizing role of
anharmonicity. Indeed, while measurements confirm the
presence and stability of this structure [2–5], theoretical
calculations based on the harmonic approximation find
imaginary phonon branches throughout the whole
Brillouin zone (BZ) [6–9].

Under pressure, calcium exhibits a complex and inter-
esting behavior. For instance, it becomes the element with
the largest superconducting critical temperature (Tc),
reaching 25 K at 161 GPa [10]. According to room tem-
perature x-ray diffraction measurements [2,3,11,12], the
ambient condition fcc phase transforms to bcc at 19 GPa, to
sc at 32 GPa, to P43212 at 119 GPa, to Cmca at 143 GPa,
and to Pnma at 158 GPa. Moreover, it has recently been
reported that upon cooling the sc structure transforms into
a very similar monoclinic Cmmm phase at 30 K and
45 GPa [5]. On the other hand, evolutionary density-
functional theory simulations within the generalized
gradient approximation at 0 K [13] found that the experi-
mental phases do not always coincide with the lowest
enthalpy structures. This is quite dramatic in the stability
range of the sc phase considering that the I41=amd struc-
tures (from 33 to 71 GPa) and C2=c structures (from 71 to

89 GPa) have considerably lower enthalpy than sc. Recent
diffusion quantum Monte Carlo calculations) [9] have
brought new insight to this problem, showing that the sc
phase is energetically preferred over the I41=amd phase
when the exchange-correlation energy is treated correctly.
Nevertheless, the question of dynamical stability remains
and a proper quantum-mechanical treatment explicitly
incorporating anharmonicity is still missing.
The extreme anharmonicity in sc Ca requires a non-

perturbative approach and suggests the application of the
self-consistent harmonic approximation (SCHA) [14,15].
The SCHA seeks the physically well-defined Gibbs-
Bogoliubov bound and, in contrast to classical molecular
dynamics (MD) or statistical sampling methods [16],
works at any temperature with no additional cost.
However, in order to apply this theory, the knowledge of
all anharmonic coefficients is needed. Calculating them
from first principles is usually complicated and highly
time-demanding; thus, the SCHA has been normally ap-
plied by making use of empirical potentials. Nevertheless,
given the simplicity and high symmetry of the sc structure,
we have calculated ab initio all the necessary anharmonic
coefficients up to fourth order in displacement. The SCHA
could then be applied to compute the temperature-
dependent renormalized phonon frequencies. The calcula-
tions have been performed at 50 GPa, and, as it turns out,
within this formalism the phonons of sc Ca are stable even
at 0 K at this pressure. Unless stated otherwise, we use
atomic units throughout, i.e., @ ¼ 1.
Within the Born-Oppenheimer approximation, the

Hamiltonian describing the dynamics of the N ions in the

crystal is given by Ĥ ¼ T̂ þ Û, where T̂ and Û are, re-
spectively, the kinetic and potential energy operators of
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the ions. The potential is expanded up to fourth order as

Û ¼ Û0 þ Û2 þ Û3 þ Û4 with

Û n ¼ N1�ðn=2Þ

n!

X

f�qg
û�1ðq1Þ . . . û�nðqnÞ��1...�nðq1; . . . ;qnÞ:

(1)

In Eq. (1), f�g represent Cartesian coordinates,
��1...�nðq1; . . . ;qnÞ is the Fourier transform of the nth
derivative of the total energy with respect to the ionic
displacements, and û�ðqÞ is the Fourier transform of the
ionic displacement operator. In the harmonic approxima-
tion, by neglecting the third- and fourth-order terms of
the potential, the Hamiltonian is diagonalized in terms of

phonons. The term Û3 þ Û4 can be treated within the
perturbation theory to correct the phonon frequencies and
account for their finite lifetime [17]. However, in sc Ca the
energy has no lower bound due to the imaginary frequen-
cies obtained in the harmonic approximation, and, there-
fore, one needs to treat anharmonicity beyond the
perturbation theory. In the SCHA, one adds and subtracts
to the potential a trial harmonic term that yields well-

defined real phonon frequencies Û0
2 and redefines the

Hamiltonian as Ĥ ¼ Ĥ0 þ Ĥ1, with Ĥ0 ¼ T̂ þ Û0
2 and

Ĥ1 ¼ ðÛ2 � Û0
2Þ þ Û3 þ Û4. The exact free energy F

satisfies the Gibbs-Bogoliubov inequality

F � F0 þ hĤ1i0; (2)

so that the minimum of the right-hand side of Eq. (2)

becomes an excellent approximation of F. F0 and hĤ1i0
are given as F0 ¼ � 1

� lnZ and hĤ1i0 ¼ trðĤ1e
��Ĥ0Þ=Z,

respectively, where � ¼ 1=kBT and the partition function

is Z ¼ trðe��Ĥ0Þ.
The adjustable parameters that can be used for the

minimization are the trial phonon frequencies f��qg that
diagonalize Ĥ0, � being a mode index. By differentiating
Eq. (2) with respect to ��q, the equation for the trial

frequencies that minimize the free energy can be obtained
straightforwardly:

�2
�q ¼ !2

�q þ 8��qj�q: (3)

A numerical solution of this equation leads to the renor-
malized frequencies ��q at any temperature. In Eq. (3),

j�q ¼ 1

8N

X

�0q0f�g

��1

�0q0�
�2

�0�q0�
�3
�q�

�4
��q

4M2��q��0q0

���1�2�3�4ðq0;�q0;q;�qÞ½1þ 2nBð��0q0 Þ�; (4)

��q is the phonon polarization vector, M the mass of Ca,

f!�qg the phonon frequencies diagonalizing Û2, imaginary

at some q, and nB the usual bosonic occupation factor. As
can be seen, the third-order anharmonic coefficients do not
contribute to F at this level of approximation. It should be

noted that in the renormalization process the polarization
vectors are kept fixed. This is justified for the highly
symmetric sc phase, but in systems with different atoms
in the unit cell polarization vectors may be used to mini-
mize Eq. (2).
The computationally most expensive part of the method

described above is the ab initio calculation of the fourth-
order anharmonic coefficients f��1�2�3�4ðq0;�q0;q;�qÞg.
These can be obtained by taking numerical second deriva-
tives of dynamical matrices calculated in supercells (see,
for example, Ref. [18]; the method presented there was
slightly extended, given that two linearly independent real
displacements must be used to generate the necessary
supercells at q points not at the BZ edge). Such dynamical
matrices were obtained by using the density-functional
perturbation theory [19] as implemented in QUANTUM

ESPRESSO [20] within the Perdew-Burke-Ernzerhof gener-

alized gradient approximation [21] and making use of a 10
electron ultrasoft pseudopotential with 3s, 3p, and 4s
states in the valence. A 30 Ry cutoff was used for the
plane-wave basis and a 16� 16� 16 Monkhorst-Pack k
mesh for the BZ integrations. Phonon frequencies and
anharmonic coefficients were calculated on a 4� 4� 4
q grid [22], and the renormalized phonon dispersion curves
were obtained by Fourier interpolation.
The strong anharmonicity in this system stabilizes all the

imaginary phonon branches even at 0 K, as can be seen in
Fig. 1. This is an extraordinary effect considering that,
normally, anharmonic stabilization of unstable modes

-50

0

50

100

150

200

250

300

350

F
re

qu
en

cy
 (

cm
-1

)

T = 0 K
T = 300 K
harmonic

Γ X M R Γ M
0 0.2 0.4 0.6

λ(ω)
PDOS
α2

F(ω)

FIG. 1. (Left panel) Harmonic phonon spectra and renormal-
ized anharmonic phonon spectra at 0 and 300 K of sc Ca at
50 GPa. For the 0 K anharmonic branches the value of the mode
electron-phonon coupling ��q is proportional to the area of each

filled circle. Filled squares depict the renormalized frequencies
obtained by Teweldeberhan, Dubois, and Bonev [9] from clas-
sical MD at 300 K and 45 GPa. (Right panel) At zero tempera-
ture, the anharmonic results for the integrated electron-phonon
coupling parameter �ð!Þ, the Eliashberg function �2Fð!Þ, and
the phonon density of states (PDOS).
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occurs with increasing temperature [16]. MD simulations
have suggested that sc Ca may be stable at room tempera-
ture [9,23]. On the other hand, MD calculations cannot [23]
predict the stabilization below the Debye temperature
(�D � 120 K according to our calculations) since, as we
demonstrate, sc Ca is stabilized by purely quantum anhar-
monic effects at 0 K. In particular, our results give 26:8 and
2:6 cm�1 for the transverse modes, unstable in the har-
monic case, at the X and M points, respectively. Although
low-energy transverse modes show the largest renormal-
ization, longitudinal modes also suffer a considerable an-
harmonic correction. As expected, phonon frequencies
increase when the temperature is raised. Concretely, the
temperature dependence is very strong for the transverse
mode atM and at R. At 300 K, above�D, our results are in
close agreement with the values obtained from MD at the
zone boundary by Teweldeberhan, Dubois, and Bonev [9].
Note that their calculation was performed at 45 GPa and
ours at 50 GPa.

In sc Ca, as in many other cases [18,24,25], it is crucial
to account for scattering between phonons with different
momenta. Indeed, if we make the assumption that
nondiagonal coefficients are equal to the diagonal
ones in Eq. (4), ��1�2�3�4ðq0;�q0;q;�qÞ���1�2�3�4

ðq;�q;q;�qÞ, the error caused in ��q is quite dramatic

and the temperature dependence becomes unrealistic. For
example, the mode at R reaches a frequency of 235:5 cm�1

at 0 K and already 372:2 cm�1 at 100 K, 2.6 times larger
than our predicted value. At R such a difference is a
consequence of the huge value of the diagonal coefficients
in comparison to the nondiagonal ones. As shown in Fig. 2,
the importance of the diagonal anharmonic coefficients can
be calculated from frozen phonon calculations. For a mode
with momentum q at the edge of the BZ, when the atoms
are displaced from their equilibrium position R as
�a cosðqRÞ��q, with a the lattice parameter and � a small

dimensionless number, the potential is given as E=Nð�Þ ¼
�2

2 a2M!2
�q þ �4

4! �4;�q, with

�4;�q ¼ a4
X

f�g
��1
�q�

�2
��q�

�3
�q�

�4
��q�

�1�2�3�4ðq;�q;q;�qÞ:

(5)

A fit to this potential yields the frozen phonon �4;�q

coefficient. As can be seen in Fig. 2, our values obtained
by differentiating dynamical matrices in supercells are in
good agreement with frozen phonon estimates.
Our method yields the whole renormalized phonon spec-

trum at 0 K, and, thus, we can estimate the superconducting
transition temperature in sc Ca. The usual electron-phonon
vertex is not modified by anharmonicity since the matrix
elements of the gradient of the crystal potential are inde-
pendent of the phonon frequencies [26]. Therefore, the
electron-phonon coupling constant � can be calculated
straightforwardly by using the electron-phonon matrix el-
ements and the renormalized frequencies ��q at 0 K. The

convergence of the electron-phonon matrix elements re-
quired a denser 80� 80� 80 k grid. Integrating the
Eliashberg function �2Fð!Þ, we obtain � ¼ 0:74 and
!log ¼ 53 K, leading to Tc ’ 2:1 K, an estimate obtained

from the Allen-Dynes modified McMillan equation [27]
(we have used�� ¼ 0:1 for the Coulomb pseudopotential).
As can be seen in Fig. 1, the greatest contributions to �
come from the soft transverse modes which are unstable
in the harmonic approximation. Indeed, the integrated
electron-phonon coupling parameter �ð!Þ reaches the
value of 0.54 at 50 cm�1 (that is, 73% of the total value
of �), so that, if it were not for these soft modes, sc Ca
would superconduct only below 0:1 �K. The value calcu-
lated for Tc at 50 GPa is in close agreement with the
experimental 1.2 K value obtained by Okada et al. [28]
and with the 1.7 K value obtained by extrapolating linearly
the Tc values measured for sc Ca at higher pressure in more
recent experiments [10]. Finally, despite the strong anhar-

monicity, the isotope coefficient � ¼ � d lnTc

d lnM is predicted

to be 0.45, close to the 0.5 value of a BCS superconductor.
The temperature-dependent renormalized frequencies

f��qg allow us to estimate the anharmonic free energy

directly from Eq. (2) and the constant volume specific

heat as CV ¼ �Tð@2F
@T2ÞV . As shown in Fig. 3, the high-

temperature limit of the specific heat per atom is reduced
by 17% from the classical 3kB value given by the equipar-
tition theorem. Such a reduction from the Dulong-Petit law
is a sign of strong anharmonicity [29,30] and has been
observed in different systems [31,32]. Moreover, the low-
temperature behavior of CV is strongly modified from the
T3 relation of harmonic crystals. The anomalies of the
specific heat are mainly driven by the temperature depen-
dence of the phonon frequencies in F0. Indeed, as depicted
in Fig. 3, when the specific heat is calculated from F0,
assuming that the 0 K renormalized phonons are not

-0.1 -0.05 0 0.05 0.1
η

-5

0

5

10

15

E
/N

 (
m

eV
)

(a) (b)

Φ4
fp

 = 29.19 meV
Φ4 = 30.18 meV

Φ4
fp

 = 332.5 meV
Φ4 = 323.1 meV

-0.1 -0.05 0 0.05 0.1
η

0

20

40

60

80

100

120

FIG. 2. Total energy per atom when the atoms are displaced
along the transverse mode atM (a) and R (b). The dots depict the
ab initio total energies; the solid line is the fit to the quartic
potential, the dashed line the harmonic contribution, and the
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modified under temperature, the Dulong-Petit law and the
low-temperature T3 behavior are recovered as expected.

In summary, within the SCHA, using a variational pro-
cedure based on the Gibbs-Bogoliubov inequality, we have
shown that the high-pressure sc phase of Ca is stabilized
even at 0 K by strong quantum anharmonic effects. This
procedure has been used in calculating fully ab initio
the anharmonic coefficients up to fourth order in the whole
BZ and may be applied as well in many cases where the
phonons are imaginary or anharmonicity needs to be
treated beyond the standard perturbation theory.
Although below 30 K the sc phase may transform to a
rather similar monoclinic Cmmm phase [5], which is me-
chanically unstable in the harmonic approximation as well
and shows very similar harmonic phonons [9], we have
calculated the superconducting Tc of sc Ca, finding a good
agreement with experiment. Moreover, the huge anharmo-
nicity in this system makes the specific heat very anoma-
lous with a large reduction from the high-temperature 3kB
limit. An experimental confirmation of this last feature
would indirectly show the strong anharmonic behavior
predicted.
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