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The question of how nonlinear interactions redistribute the energy of fluctuations across available

degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized

weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a

theory for the dual cascade found in such plasmas, which predicts a range of new behavior that

distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms

of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the

first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic

code ASTROGK. The basic mechanisms that are found provide a framework for understanding the turbulent

energy transfer that couples scales both locally and nonlocally.

DOI: 10.1103/PhysRevLett.106.165003 PACS numbers: 52.30.Gz, 52.35.Ra, 52.65.Tt, 94.05.Lk

It is known that a dual cascade occurs in 2D neutral fluid
turbulence [1] and also in some reduced models of mag-
netized plasma turbulence such as the Hasegawa-Mima
equation [2]. This cascade has the intriguing feature that
two invariants are spectrally transferred in opposite senses;
that is, the enstrophy flows to small scales while the energy
is organized at large scales. This behavior is due to the fact
that the redistribution of these two invariants is constrained
by the relationship between their spectral densities, as first
explained by Fjørtoft [3]; also see [4,5] for application
relevant to plasmas.

In gyrokinetics, the turbulent field is a scalar distribution
function g [6], which varies over both position and velocity
space, i.e., the particle phase space. There are two impor-
tant quadratic quantities associated with this description,
namely, the free energy W and the electrostatic energy E,
which are ‘‘nonlinear invariants’’ (that is, conserved by the
sole action of the nonlinearity) in both 2D and 3D. These
quantities represent the energy of turbulent fluctuations. To
study their transfer, we focus on a minimal form of gyro-
kinetics which retains nonlinear dynamics, but neglects
linear drive and damping mechanisms: the homogeneous
2D gyrokinetic equation [7].

It was theoretically predicted [7,8] and numerically ob-
served [9] that 2D gyrokinetics has a cascadewhich exhibits
the forward transfer of free energy to smaller scales in both
position and velocity space, while electrostatic energy is
transferred inversely to larger scales. In this Letter, we find
that this conventional dual cascade is only one possible
behavior. Adapting the arguments of Fjørtoft, a full range
of behavior can be understood by considering how the
relationship between the nonlinear invariants constrain evo-
lution of the phase-space spectrum. This analysis reveals
that the direction and locality of the nonlinear transfer
actually depend on the way in which the free energy is
initially distributed (or injected) across the phase-space
spectrum. For certain initial conditions, we find that a

dramatic nonlocal inverse transfer of electrostatic energy
will occur, whereby large scales are driven directly by small
scales. In the other extreme, we find that the inverse transfer
is replaced by a forward transfer which can be nonlocal or
local.Where the transfer is nonlocal, this provides amecha-
nism for the damping of large scales by small scales, which
could be exploited to reduce the turbulent transport that
limits the performance of fusion devices.
In 2D, the gyrokinetic distribution function g depends on

the gyrocenter positionR ¼ x̂Rx þ ŷRy, the perpendicular

velocity v, and the time t. This field evolves nonlinearly
via the E� B velocity determined from the electrostatic
potential’which is a function of position r and time t [i.e.,
see Eq. (2.5) of [7] ].
A crucial assumption at the outset is the existence of an

external scale in velocity space, which we take to be the
thermal velocity vth. This determines the characteristic
spatial scale, the (thermal) Larmor radius � ¼ vth=�.
We assume that gðvÞ is attenuated above vth. In fact, for
the perturbed entropy to be a finite quantity, gðvÞ must fall
off at least as fast as a Gaussian as v ! 1.
We normalize velocity and spatial quantities to the

thermal velocity and Larmor radius, respectively (see [7]
for the full normalization). In what follows we will focus
on interactions among ‘‘sub-Larmor’’ scales, i.e., spatial
scales and velocity scales that are smaller than the Larmor
radius and thermal velocity, respectively. This is in contrast
to the typical fluid limit k � 1, where the formulation of
the energetics depends on the reduced description specific
to the particular problem of interest.
To obtain a discrete spectral representation, we assume

the system to have a finite extent in both position and
velocity space. Adapting the continuous representation
from [7], we decompose g using a Bessel-Fourier series:

gðR;vÞ¼ X
ki;pj

eiki:R
�pj

vcut

�ðvcut�vÞJ0ðpjvÞĝðki;pjÞ; (1)
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where pj ¼ �j=vcut and �j is the jth zero of the zeroth-

order Bessel function J0 and � is the Heaviside step
function, which explicitly provides the velocity cutoff.
The cutoff velocity is vcutðkiÞ � 1, chosen for each ki
such that pj ¼ ki for some j. Inverting the transform gives

ĝðki; pjÞ ¼
Z d2R

L2
e�iki�R

Z
vdvJ0ðpjÞgðR; vÞ; (2)

where L is the system size in Rx and Ry. In spectral form,

the quasineutrality constraint, which relates the potential to
the distribution function, is simply

’̂ðkiÞ ¼ �ðkiÞĝðki; kiÞ; (3)

where � ¼ 2�=ð1þ �� �̂0Þ, � is a constant related to the

electron response [7] and �̂0 ¼ I0ðk2Þe�k2 where I0 is
the zeroth-order modified Bessel function. For k � 1, the

regime of interest, �̂0 / 1=k may be neglected. The elec-
trostatic energy is defined

E ¼ 1

2

Z d2r

L2
½ð1þ �Þ’2 � ’�0’� ¼

X
ki

EðkiÞ; (4)

where, from Eq. (3), EðkiÞ ¼ ��jĝðki; kiÞj2. The other
invariant, being a function of velocity space, we call
‘‘kinetic free energy’’: GðvÞ ¼ 1=ð2L2ÞR d2Rg2. For the
purposes of this Letter, we are not interested in this full
invariant but only on the consequences its existence has for
constraining the spectral evolution of fluctuations (note
that [10] do retain the details of G). The relevant quantity
is formed by integrating G over its velocity-space depen-
dence; henceforth, we focus on this quantity, the (general-
ized) free energy:

W ¼ 4�vcut

1þ �

Z
vdvGðvÞ ¼ X

ki

X
pj

Wðki; pjÞ; (5)

where Wðki; pjÞ ¼ 2�2pjjgðki; pjÞj2=ð1þ �Þ. For com-

parison we note that W is proportional to the quantity
Wg1 from [7]. Note that W [or more generally GðvÞ] and
E, being the known quadratic invariants, play a special role
in constraining spectral transfer, just as enstrophy and
energy do in 2D fluid turbulence [11].

We now arrive at the central equation of this Letter, a
constraint on the spectral densities of the invariants. In the
limit k � 1, it follows from the above definitions that [see
also the derivation [7], Eq. (7.14)]

Wðki; kiÞ ¼ kiEðkiÞ: (6)

Upon initial inspection, this relationship is similar to that
for the NS equation: ZNSðkiÞ ¼ k2i ENSðkiÞ, where ENS and
ZNS are the energy and enstrophy, respectively. However,
this relationship constrains energetic interactions involving
those components of free energy residing only along the
diagonal in k-p space (ki ¼ pj) [12]. This fact underscores

the difference between the roles of velocity space and
position space and, as we will see, is the central reason

for the novel behavior that is discovered. Let us first
consider what Eq. (6) implies for three-scale interactions.
We define the free energy at the wave number pair

(ki, pi) to be Wi ¼ Wðki; piÞ ¼ P
jkjj¼ki

Wðkj; piÞ and

the corresponding electrostatic energy to be Ei ¼
�ðki � piÞEðkiÞ ¼ �ðki � piÞPjkjj¼ki

EðkjÞ, where � is

the discrete delta function. Let us consider the difference
in energies between the initial and final times, t0 and t1, for
three components i ¼ 1, 2, and 3. Thus we define �Wi ¼
Wiðt1Þ �Wiðt0Þ and �Ei ¼ Eiðt1Þ � Eiðt0Þ. Conservation
of W and E implies

�W1 þ �W2 þ�W3 ¼ 0;

�E1 þ �E2 þ �E3 ¼ 0:
(7)

As illustrated in Fig. 1, there are two types of con-
strained transfer. For definiteness, we take k1 < k2 < k3.
In type I transitions, Fig. 1(a), all three components are

diagonal, pi ¼ ki. In this case, transfers are constrained
in precisely the sense of Fjørtoft, with the substitution
k2i ! ki. From Eqs. (6) and (7) we obtain

�E1 ¼ ��E2ðk3 � k2Þ=ðk3 � k1Þ; (8)

�E3 ¼ ��E2ðk2 � k1Þ=ðk3 � k1Þ: (9)

The quantities in parentheses are positive (because
k1 < k2 < k3). Thus, as noted by Fjørtoft, it is only the
intermediate wave number k2 which can be a source for
both the two remaining components.
Type II transitions, Fig. 1(b), involve two diagonal com-

ponents, and also lead to inverse transfer of E for the arrow
directions indicated. To see this, first note that �E3 ¼ 0
because p3 � k3. From Eqs. (6) and (7) we find

�E1 ¼ �W3=ðk2 � k1Þ: (10)

Thus, a transfer of free energy from diagonal to non-
diagonal components must be accompanied by a simulta-
neous inverse transfer of E; as we will shortly see, the
reverse process can also spontaneously occur.
Finally, note that transitions involving only one diagonal

component are forbidden as they cannot conserve E,
while those that involve no diagonal components are
unconstrained.

FIG. 1 (color online). Constrained energetic transitions involv-
ing three scales. The dotted diagonals indicate k ¼ p.
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The elementary three-scale transitions form building
blocks for thinking about more complicated evolution.
For instance, the forward diffusion of free energy along
and away from the diagonal, generally speaking, must
induce an inverse transfer of electrostatic energy. On the
other hand, we can imagine that the free energy could be
initially concentrated in nondiagonal components and, in
this case, the random redistribution of free energy would
excite diagonal components causing electrostatic energy to
flow forward, in the reverse sense of Fig. 1(b). From these
considerations, it seems that the tendency for electrostatic
energy to flow forward or backward should depend on the
way in which the free energy is distributed relative to the
diagonal. We will use the parameter � ¼ W=E to help
quantify this: small � corresponds to free energy being
concentrated on the diagonal while large � corresponds to
free energy being concentrated off diagonal.

Let us now turn to the numerical results. We use the
nonlinear gyrokinetic code ASTROGK [13], including colli-
sional dissipation as a free energy sink at large k to prevents
nonphysical ‘‘bottlenecking.’’ We also restrict attention to
cases where the lowest wave number is unexcited, so as to
avoid effects of energetic condensation at large scales.

Having explored a variety of initial spectral distribu-
tions, we present three here, corresponding to different
magnitudes of �, which exemplify different types of spec-
tral evolution. To accompany the discussion, we provide
some simple analytic calculations. Figure 2 shows the
initial evolution of Wðk; pÞ for the three cases, in the order
of increasing �.

The first case, Figs. 2(a) and 2(b), is an extreme case,
corresponding to small �. The free energy is concentrated
around a single diagonal component (k0, k0). The transfer
of free energy away from this initial peak can only be
accomplished by either Fjørtoft-type [Fig. 1(a)] or
kinetic-type transitions [Fig. 1(b)], which both demand
an inverse transfer of electrostatic energy. As shown in
Fig. 2(b), this is indeed what occurs: diagonal components
are strongly excited at wave numbers smaller than k0. As
seen in Fig. 3(a), the transfer that occurs is actually non-
local, with a dominant peak of electrostatic energy EðkÞ
emerging spontaneously at a wave number kd that is sig-
nificantly smaller than k0.

Notice in Fig. 2(b) that the Wðk; pÞ spectrum is excited
along lines in the k-p plane. This hints to the presence of an
instability that involves the coupling of a small number of
Fourier components. We confirm that a four-wave trunca-
tion (see, e.g., [14]) is in fact an excellent approximation
for the instability that is induced in the presence of a single
Fourier component; the details of this calculation will be
reported elsewhere [15]. The growth rate curve [�sðkÞ in
arbitrary units] of this instability is incorporated into
Fig. 3(a). Note that the wave number of peak growth rate
is close to that of the peak which develops in the energy
spectrum.

At a later stage, the case of Fig. 2(a) evolves to a state in
which the free energy is more broadly distributed about the

diagonal. In this state, the 4-wave instability is apparently
suppressed, or otherwise lost in the bath of fluctuations.
Thus, many more degrees of freedom participate and the
evolution becomes much more cascadelike, whereby the
free energy diffuses locally in k-p space.
To treat the cases of Figs. 2(c)–2(f) more quantitatively

we perform a calculation, extending the arguments of
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FIG. 2 (color online). Example spectral distributions
log10½Wðk; pÞ=W� and initial evolution. Diagonals marked by
dotted lines.
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FIG. 3 (color online). Evolution of the electrostatic energy
spectrum.
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Fjørtoft with some simple assumptions. In each case that
we consider, the initial spectrum is dominated by a single
wave number k0. During a finite period of time, energy is
liberated from this distribution in the amount W0 and E0,
satisfyingW0=E0 ¼ �. Some amount of these energies,W 0
and E0, diffuse forward in k-p space. We observe that this
redistribution is locally diffusive in k-p space, spreading
randomly to unoccupied wave numbers. By simple mode
counting, this implies the relationship W 0 � Ck20E

0, where
C is some (possibly universal) constant of order unity.
Now, in order to maintain the balance of both invariants,
there must be some transfer of electrostatic energy Ed to a
wave number kd, along with the corresponding free energy
Wd ¼ kdEd. By conservation of energies we have
W0 ¼ W 0 þWd and E0 ¼ E0 þ Ed. We can combine these
expressions to obtain

R ¼ ð�� kdÞ=ðCk20 � �Þ; (11)

where R ¼ E0=Ed. The parameters R and kd characterize
the direction and locality of the transfer of E. From
Eq. (11), it is clear that � is an important parameter: at
the critical case �c ¼ Ck20, R diverges and changes sign.

In Fig. 2(c), we have an initial condition with free energy
distributed broadly around k0 ¼ 20. This case is the closest
in behavior to the conventional dual cascade of fluid me-
chanics. The free energy is observed to diffuse locally
forward in k-p space whereas the transfer of electrostatic
energy is mostly local and directed in the inverse direction,
to k < k0, as is apparent in Fig. 3(b). Thus it appears that
0<R< 1, so, since � > k0 > kd, we can conclude that
� < �c.

For � ! �c ¼ Ck20, the evolution of EðkÞ changes char-
acter sharply. If, for instance, the magnitude of kd is
comparable to k0, i.e., kd �Oðk0Þ, then, by Eq. (11), R is
a large positive number for � & �c. Therefore most of the
electrostatic energy transferred is forward. Now, if � ex-
ceeds �c, R becomes negative and electrostatic energy is
extracted from the kd component. For kd > k0, this then
corresponds to an inverse transfer of E, while for kd < k0,
the transfer is forward.

In Figs. 2(e) and 2(f) we have the case � � �c. Here
there is a dominant bath of free energy around k� 20
while we fix kd at the outset by providing an initial
‘‘seed’’ energy at kd � 5. As the system evolves, electro-
static energy is drawn from the component at kd and so, by
Eq. (11), Ed is negative. This process must proceed by
kinetic transitions in the reverse sense of Fig. 1(b),
whereby electrostatic energy is ‘‘forcefully’’ drawn from
the large scale components to support the diffusion of free
energy at small scales.

The local diffusion of free energy is clearly observed
from an initial bath at high k and low p. Also, the evolution
of EðkÞ, shown in Fig. 3(c), shows forward transfer of
electrostatic energy. For comparison, Fig. 3(d) shows an-
other large-� case, but with the seed energy at kd ¼ k0.
Here the system evolves by a dual forward cascade,
whereby both W and E are transferred locally to finer

scales. Note that the surprising ‘‘cascade reversal’’ of E
is essentially due to the freedom afforded by the larger
spectral space available to W. Note that the directionality
and locality of transfers in all of the above cases has been
confirmed by a nonlinear transfer diagnostic; these obser-
vations will be reported elsewhere.
It is true that in a general 3D gyrokinetic system, mag-

netic geometry and linear mode physics can formally break
the invariance of E and W by introducing both damping
and instability; this strongly affects the nature of the tur-
bulence. However, we stress that the nonlinear transfer of
fluctuation energy must always occur in such a way as to
conserve both E and W. This is due to the fact that the
nonlinearity can always be written in terms of Poisson
brackets involving a stream function (in the electrostatic
limit, the electrostatic potential) for the turbulent flow; this
is not possible in 3D fluid turbulence (or general plasma
turbulence) and thus energy transfer is not in that case
constrained as it is in 2D. Because of these facts, we
believe that the mechanisms revealed in this Letter are a
generic feature of kinetic magnetized plasmas.
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