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We present a new phase-field model for binary fluids, exhibiting typical signatures of soft-glassy

behavior, such as long-time relaxation, aging, and long-term dynamical arrest. The present model allows

the cost of building an interface to vanish locally within the interface, while preserving positivity of the

overall surface tension. A crucial consequence of this property, which we prove analytically, is the

emergence of free-energy minimizing density configurations, hereafter named ‘‘compactons,’’ to denote

their property of being localized to a finite-size region of space and strictly zero elsewhere (no tails).

Thanks to compactness, any arbitrary superposition of compactons still is a free-energy minimizer, which

provides a direct link between the complexity of the free-energy landscape and the morphological

complexity of configurational space.
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The coarsening mechanisms by which a binary fluid
mixture attains an ordered state upon a deep quench from
a high-temperature disordered phase continue to attract a
great deal of attention in the scientific community [1–3].
Apart from their paramount practical interest, these phe-
nomena still set a fascinating challenge to the foundations
of nonequilibrium thermodynamics, because of their
competition-driven long-time relaxation, often denoted as
‘‘glassiness’’ or ‘‘self-glassiness.’’ The literature on glassy
systems is huge, covering materials as diverse as colloids,
block copolymers, proteins, glass forming liquids, and
many others [1,2]. Equally broad is the spectrum of theo-
retical or computational techniques employed for their
study, such as replica methods, mode-coupling theory,
mesoscopic kinetic models, as well as molecular dynamics,
Monte Carlo and Langevin simulations [3]. More specifi-
cally, coarsening phenomena in binary mixtures are typi-
cally described by Langevin equations, governing the
space-time evolution of the order parameter, i.e., the den-
sity deficit between the two-fluid densities [4]. Depending
on the specific details, different exponents are then pre-
dicted for the power-law growth of the coarsening length,
the typical linear size of the coarsening domains. In soft-
glassy materials, however, domain growth is observed to
undergo long-term slowdown and possibly even dynamical
arrest. In this Letter, we present a new phase-field Landau-
Ginzburg (LG) model exhibiting most typical signatures of
self-glassiness, such as longtime relaxation, aging, and
long-term dynamical arrest. The present model can be
analytically derived, bottom-up, from a mesoscopic kinetic
scheme for complex fluids with competing short-range
attraction and long-range repulsion [5]. Similarly to pre-
vious phase-field models [6,7], the stiffness coefficient,
controlling the cost of building and maintaining an inter-
face between the two fluids, acquires a dependence on the
local value of the order parameter. However, unlike any

previous work we are aware of, instead of triggering local
instabilities by sending the leading interface term to nega-
tive values everywhere across the interface, and then sta-
bilizing through higher-order inhomogeneities [8], here the
stiffness becomes zero only locally within the interface,
thereby preserving the positivity of the overall surface
tension. This subtle difference spawns far-reaching con-
sequences. Indeed, the present model is analytically shown
to promote the emergence of stable, finite-support, density
configurations, which we name ‘‘compactons.’’ The dy-
namics of these compactons is then shown to be ultimately
responsible for the self-glassiness of the binary mixture.
Here and throughout, at variance with Ref. [9], the term
‘‘compacton’’ is kept within quotes, to imply that it just
refers to the property of these density excitations of being
localized within a finite-support region of configuration
space, and zero everywhere else, throughout the evolution.
The emergence of compactons is hereby discussed analyti-
cally, both in the continuum and discrete versions of our
phase-field models. Typical signatures of self-glassiness,
such as ultraslow relaxation, aging, and dynamical arrest,
are further demonstrated by direct numerical simulations.
Let us start by considering the following LG-like phase-
field equation:
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where �ð ~x; tÞ is the order parameter, taking values
� ¼ �1 in the bulk, and � ¼ 0 at the two-fluid interface.
In the above, Vð�Þ is the bulk free-energy density, which
we shall take in the standard double-well form Vð�Þ ¼
� 1

2�
2 þ 1

4�
4, supporting jumps between the two bulk

phases, � ¼ �1, where � is a white noise � correlated
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in space and time, with variance �. The key ingredient of
our model rests with the specific form of the stiffness
function Dð�Þ, describing the lowest order approximation
to the energy cost of building an interface between the two
fluids. In the standard LG formulation, this is a constant
parameter D0, fixing the value of the surface tension,
through the relation ��D0

Rð@x�Þ2dx, x being the coor-

dinate across the (flat) interface. Positive values of �
promote coarsening, as a result of the surface tension
tendency to minimize the surface/volume ratio of the fluid.
Negative values of �, on the other hand, promote an
unstable growth of the interface, an instability that is
usually tamed at short scale by including higher-order
‘‘bending’’ terms of the form��ð��Þ2 where � is referred
to as bending rigidity. It is readily seen that with D0 < 0
and � > 0, the system undergoes instabilities, which are
typically responsible for pattern formation [6,8]. Such
instabilities are then stabilized at short scales by a positive
bending rigidity. Gompper et al., among others [6], studied
the case with piecewise constant Dð�Þ to describe micro-
emulsions [7]. Our model belongs to the same class as
Gompper’s, with

Dð�Þ ¼ D0 þD2�
2; (3)

yet with a crucial twist: instead of sending D0 to negative
values, in order to trigger local interface instabilities,
we just set D0 ¼ 0 and achieve a local zero-cost condi-
tion, Dð�Þ ¼ 0, just at � ¼ 0, by letting D2 > 0.
Thermodynamic stability of the interfaces is still secured,
since � > 0, and consequently we resolved to set the
bending rigidity to � ¼ 0 in (2), so as to single out the
effect of the modulated stiffnessDð�Þ alone. In the follow-
ing, we shall show that the peculiar feature discussed above
holds the key for observing ultimate arrest of the fluid. As
anticipated, this is due to the onset of complex density
configurations, resulting from arbitrary superpositions of
stable, finite-support density configurations, which we
name compactons.

Let us then present our analytical analysis by looking
at the one-dimensional, stationary solutions of Eqs. (1)
and (2) in the limit D0 ! 0 and no noise (� ¼ 0). One
quadrature yields

1
2D2�

2ð@x�Þ2 þ 1
2�

2 � 1
4�

4 ¼ E; (4)

where E � 1=4 is an arbitrary integration constant. Note
that the relation between E and F for a single compacton
is F ¼ R ðD2�

2ð@x�Þ2 � EÞdx. The analytical solution is

provided by

�EðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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where � ¼ ðx� x0Þ=ld, ld ¼
ffiffiffiffiffiffiffiffiffiffiffi
D2=2

p
, e ¼ 2

ffiffiffiffi
E

p
. Here x0

is an arbitrary location and � is the characteristic function
(� ¼ 1 inside and � ¼ 0 outside) in the segment x0 �
x � x0 þ le, le ¼ ldarctanhð2e=ð1þ e2ÞÞ (see Fig. 1).
Several comments are now in order. First, this solution

is compact; i.e., it is identically zero outside the segment
½x0 < x< x0 þ le�. This property is crucially related to
the vanishing of the prefactors in front of the differential
operators, which allows discontinuity in the slope of
�ðxÞ. The location of the segment x0 is arbitrary because
of translation invariance, whereas its extension le is
dictated by E. Under the condition that ld be real, i.e.,
D2 > 0, a positive E> 0 corresponds to the nucleation of
a compacton of size le > 0. The compacton can eventu-
ally invade the system, le ! L, L being the size of the
domain, a condition which is met at a value EL ¼ 1=4,
since le ! 1 as E ! 1=4. More interesting, however, is
the possibility of a gas of compactons, which can ‘‘in-
vade’’ the system at lower values E< EL, by simply
superposing a collection of disjoint compactons centered
upon different values of x0. The possibility of such a
linear superposition of elementary solutions of a highly
nonlinear field theory, is again a precious consequence of
compactness. Since compactons do not overlap, they obey
a nonlinear superposition principle ðPi�iÞn ¼

P
i�

n
i for

any power n, where i ¼ 1, N labels a series of compac-
tons eventually covering the full interval,

P
N
i¼1 le;i ¼ L.

As a result, an arbitrary superposition of compactons still
obeys the generalized LG equation. By using the above
nonlinear superposition principle, a standard stability
analysis shows that, as long as the overall surface tension
is positive, � > 0, the gas of compactons is stable against
arbitrary (square-integrable) perturbations of the order
parameter; hence, it represents a local minimum of the
free-energy landscape. This result is crucial to qualify
compactons as the relevant effective degrees of freedom
responsible for self-glassiness of the complex fluid mix-
ture. Therefore, we arrive at a very elegant and intuitive
picture of glassiness, as the nucleation of a ‘‘gas of
compactons,’’ each of which corresponds to a local mini-
mum of the free energy associated with the LG equations
(1) and (2). Most remarkably, these compactons can
be added together, each collection of compactons
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FIG. 1 (color online). An example of a static gas of compac-
tons for the case D0 ¼ 0 and fixed E < 1

4 . The solution is

constructed from an arbitrary superposition of stable, finite-
support density configurations, each one centered around

its xðiÞ0 and identically zero outside the segment ½xðiÞ0 < x<

xðiÞ0 þ le�. The size le is set by E and D2 as in Eq. (5).
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corresponding to a distinct dynamical partition of physi-
cal space. This provides a very poignant and direct map
between the complexity (coexistence and competition of
multiple minima, sometimes referred to as ‘‘ruggedness’’)
of the free-energy landscape and the morphological com-
plexity of the fluid density in configuration space.

Since the collective properties of the ‘‘gas of compac-
tons’’ shall be demonstrated via numerical simulations, it is
crucial to prove that compactons survive discreteness, as
we shall show in the sequel. In particular, we analyze under
what condition on D0 and D2 one can still find compact
solutions on a lattice. To this aim, we considered stationary

solutions of the discretized version of (1) which become
0 at x ¼ 0 and found a symmetry in the solution; namely,
x ! �x implies � ! ��. This symmetry is clearly bro-
ken by the solution defined in (5) and the condition for the
existence of a nonzero, symmetry-breaking solution of the

discrete LG equation, reads D0 � 2D2
0

�x2
þ 2D2E> 0, �x

being the lattice spacing [10]. In the limit of small �x

and large D2, the latter yields
D2

0

D2�x
2 <E and can be re-

phrased in terms of competing scales, as l20=l
2
d < 1, where

l0 is a scale proportional to D0=�x and ld has been defined
previously. In this way, the limitD0 ! 0, where the system
shows self-glassiness, reads as ld � l0. We now proceed to
show that such self-glassiness is indeed observed in nu-
merical simulations of the generalized LG equations (1)
and (2). To this purpose, we simulated the generalized LG
equation, including a noise term, to represent finite-
temperature effects. The corresponding Langevin equation
is simulated on a square lattice of size 2562 with periodic
boundary conditions. Initial conditions are chosen ran-
domly, �ðx; y; t ¼ 0Þ ¼ r, where r is a random number
uniformly distributed in ½�0:1; 0:1�. In Fig. 2, we show two
color plates of the order parameter �ðx; y; tÞ at t ¼ 20 000
for the case D0 ¼ 0:3 and D2 ¼ 0 (top), D2 ¼ 2:0
(bottom), both without noise. It is apparent how the case
with D2 > 0 leads to a much retarded coarsening, as a
matter of fact to a dynamical arrest.
In Fig. 3, we report the free energy FðtÞ þ 1=4 for

D0 ¼ 0:6 and three different values D2 ¼ 0, 4, 8 with
� ¼ 0. Each point is the result of the averaging on 100
configurations with randomly chosen initial condition.
From this figure, it is seen that the asymptotic decay is
always a power law FðtÞ þ 1=4� t�a, with an exponent a
which becomes smaller and smaller as D2 is increased.
Eventually, aðD2Þ reaches the zero point (see the inset),
formally corresponding to structural arrest, for D2 � 10:7.
Next, we performed further simulations by including an
external forcing, h, constant in space and time, as well as a
thermal noise. We monitor the average response to the
external drive, �ðtÞ ¼ M�1L�2

P
M
m¼1

P
x;y �mðx; y; tÞ,

where M is the number of realizations corresponding to
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FIG. 2 (color online). Color plates of the order parameter
�ðx; y; tÞ for the case D0 ¼ 0:3, D2 ¼ 0 (top) and D0 ¼ 0:3,
D2 ¼ 2 (bottom), � ¼ 0, at t ¼ 20 000. The much slower coars-
ening associated with the D2 ¼ 2 case is well visible.
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FIG. 3 (color online). Free-energy decay for the case
� ¼ 0, D0 ¼ 0:6, and D2 ¼ 0, 4, 8. The inset reports the ex-
ponent aðD2Þ of the corresponding power-law decay for
D2 ¼ 0, 2, 4, 6, 8.
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different random initial conditions. With D2 ¼ 0 the
system reaches its driven steady state, � � 1�OðhÞ in a
finite-time tc. As D2 > 0 is switched on, this
relaxation time increases considerably. Structural arrest
similar to the one observed in Fig. 3, has been observed
also in previous lattice Boltzmann simulations [5], with
full hydrodynamic interactions and conserved parameter
dynamics. Figure 4 shows the relaxation time as a function
of D2, tcðD2; D0Þ, for D0 ¼ 0:3 and D0 ¼ 0:6 (inset) and
� ¼ 0:01. From this figure, it is seen that, as the ratio
D2=D

2
0 is increased, the relaxation time starts to ramp up

quite rapidly. This divergence is consistent with a Vogel-
Fulcher-Tammann law tcðD2; D0Þ ¼ expð C

D2;c�D2
Þ [11],

where D2;c and C both depend on D0 and D2 plays the

role of a temperature. In particular, we obtainD2;c � 2, and
D2;c � 12 for D0 ¼ 0:3 and D0 ¼ 0:6, respectively. This
ultralow relaxation is in line with the picture of a structural
arrest of the mixture, due to the stability of the compactons.
Another typical signature of glassy behavior is aging, i.e.,
the anomalous persistence in time of density-density cor-
relations. A typical aging indicator is the density-density
correlator

cðtw; tÞ ¼ hð�ðx; y; twÞ�ðx; y; tÞic
h�ðx; y; twÞ�ðx; y; twÞic ;

where tw is the waiting time and brackets denote spatial
and ensemble averaging and h. . .ic stands for connected
correlation. In Fig. 5, we show this quantity for the cases
D0 ¼ 0:6 and D2 ¼ 4 and D2 ¼ 0 (inset) and � ¼ 0:0003.
From this figure, it is apparent that for D2 ¼ 0 the density-
density correlator decays to zero, indicating that the system
is able to visit all regions of phase space. Such capability,
however, is manifestly lost in the case D2 ¼ 4, to an

increasing extent as tw is made larger, which is precisely
the aging behavior mentioned above.
Summarizing, we have presented a new phase-field

model exhibiting typical signatures of self-glassiness,
such as long-time relaxation, aging, and long-term dynami-
cal arrest. The distinctive feature of the present model is to
allow the cost of building an interface to become locally
zero, while preserving global positivity of the overall
surface tension. Analytical solutions are shown to take
the form of compact density configurations (compactons),
associated with local minima of the corresponding free-
energy functional. Direct simulations of the model show
that self-glassiness emerges as a collective property of this
‘‘gas of compactons.’’ The compacton picture proposed in
this work provides a very elegant and conceptually new
link between the complexity of the free-energy landscape
and the morphological complexity of the fluid density in
configuration space.
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