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A mechanism for asymmetric (nonreciprocal) wave transmission is presented. As a reference system,

we consider a layered nonlinear, nonmirror-symmetric model described by the one-dimensional discrete

nonlinear Schrödinger equation with spatially varying coefficients embedded in an otherwise linear

lattice. We construct a class of exact extended solutions such that waves with the same frequency and

incident amplitude impinging from left and right directions have very different transmission coefficients.

This effect arises already for the simplest case of two nonlinear layers and is associated with the shift of

nonlinear resonances. Increasing the number of layers considerably increases the complexity of the family

of solutions. Finally, numerical simulations of asymmetric wave packet transmission are presented which

beautifully display the rectifying effect.
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The design of small devices to control energy and/or
mass flows at different spatial scales is a suggestive chal-
lenge from both a theoretical and applied viewpoint. Since
the first proposal of a thermal diode [1], capable of trans-
mitting heat asymmetrically between two temperature
sources, several studies appeared in the literature [2], in-
cluding some experimental realizations [3,4].

A related issue concerns the possibility of devising a
‘‘wave diode’’ in which electromagnetic or elastic waves
are transmitted differently along two opposite propagation
directions. A so-called optical diode has been proposed in
Ref. [5,6] and later on discussed both theoretically [7,8]
and experimentally [9]. There is also a recent proposal for a
diode based on left-handed metamaterials [10]. Another
domain of application is the propagation of acoustic pulses
in granular systems. Indeed, experimental studies demon-
strated a change of solitary wave reflectivity from the
interface of two granular media [11].

The basic idea for a ‘‘wave diode’’ was proposed for
nonlinear photonic crystals [7]: the rectification depends
on whether the second harmonic of the fundamental wave
is transmitted or not. As a definition of a rectifying device
we would instead propose that the transmitted power at
fixed incident amplitude and at the same frequency !
should be sensibly different in the two opposite propaga-
tion directions. In the present Letter we pursue a novel
approach that exploits distinctive features of nonlinear
dynamical systems such as multistabiliy and amplitude-
dependent resonances to achieve such an effect.

In a linear, time-reversal symmetric system this possi-
bility is forbidden by the reciprocity theorem [12].
Therefore, one needs to consider nonlinear and asymmetric
systems [13]. As a reference model we will focus on the
discrete nonlinear Schrödinger (DNLS) equation [14,15]

with spatially varying coefficients. It has been demon-
strated [16] that DNLS can be a sensible approximation
for the evolution of longitudinal Bloch waves in layered
photonic or phononic crystals (Fig. 1). Variable coeffi-
cients describe different nonlinear properties of each layer
and the presence of defects. Beyond its relevance in many
different physical contexts, the DNLS equation has the big
advantage of being among the simplest dynamical systems
amenable to a complete theoretical analysis. For our pur-
pose, it is particularly convenient as it allows us to solve the
scattering problem exactly without the complications of
having to deal with wave harmonics.
More precisely, let us consider the stationary DNLS

equation defined on an infinite one-dimensional lattice

!c n ¼ Vnc n � c nþ1 � c n�1 þ �njc nj2c n: (1)

We will assume the usual scattering setup where Vn and
�n are nonvanishing only for 1 � n � N. The two
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FIG. 1 (color online). Sketch of a layered photonic or pho-
nonic system. The central N layers are nonlinear, nonmirror
symmetric with respect to the structure center. In the limit of a
vanishing width of the thinner layers the dynamics within high-
frequency Bloch bands is described by a DNLS equation for the
envelope c n (see Refs. [16,18] for details).
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semi-infinite portions (n < 1, n > N) of the lattice, model
two leads where the wave can propagate freely.

Let us look for solutions of the associated transmission
problem

c n ¼
�
R0e

ikn þ Re�ikn n � 1
Teikn n � N

(2)

where ! ¼ �2 cosk and 0 � k � � for the wave coming
from the left direction; R0, R and T are the incident,
reflected and transmitted amplitudes, respectively. The
solution sought must be complex in order to carry a non-
vanishing current J ¼ 2jTj2 sink.

To break the mirror symmetry with respect to the center
of the nonlinear portion, one must choose at least one of the
two sets of coefficients Vn, �n such that Vn � VN�nþ1,
�n � �N�nþ1. Note that the transmission of the right-
incoming wave with the same R0 and ! is computed by
solving the problem with ðVn; �nÞ ! ðVN�nþ1; �N�nþ1Þ
(i.e., ‘‘flipping the sample’’). In the following, we will refer
to such solutions as those having negative wave numbers,
�k. Nonlinearity is essential as for �n ¼ 0 the transmis-
sion coefficient is the same for waves coming from the left
or right side, independently on Vn. This is due to time-
reversal invariance of the underlying equations of
motion [17].

The standard way to solve the problem is to introduce
the (backward) transfer map [18–21]

un�1 ¼�vnþðVn�!þ�njunj2Þun; vn�1 ¼ un (3)

where un ¼ c n and vn ¼ c nþ1. Note that these are com-
plex quantities; therefore, the map is nominally four di-
mensional. However, due to conservation of energy and
norm, it can be reduced to a two-dimensional area-
preserving map [18–21] with an additional control parame-
ter (the conserved current J). The solutions are found by
iterating (3) from the initial point uN ¼ T expðikNÞ, vN ¼
T exp½ikðN þ 1Þ� dictated by the boundary conditions of
Eq. (2). For fixed T and k, the incident and reflected

amplitudes are determined as R0 ¼ expð�ikÞu0�v0

expð�ikÞ�expðikÞ , R ¼
expðikÞu0�v0

expðikÞ�expð�ikÞ and the transmission coefficient is

tðk; jTj2Þ ¼ jTj2=jR0j2. Note that if ðu0; v0Þ ¼ ðuN; vNÞ
(periodic point of the map) then t ¼ 1.

In order to illustrate the effect in the simplest case we
consider the DNLS dimer N ¼ 2. The coefficient t can be
thereby computed analytically iterating the map twice:

t ¼
��������

eik � e�ik

1þ ð�� eikÞðeik � �Þ
��������

2

(4)

where � ¼ V2 �!þ �2T
2, � ¼ V1 �!þ �1T

2½1�
2� coskþ �2�. The formula applies for k > 0. As ex-
plained above, to solve for the case k < 0 one has to
exchange the subscripts 1 and 2 which is equivalent to
reverse the sample.

Up to now no hypothesis has been made on the coupling
coefficients. For simplicity, we impose �1;2 ¼ �> 0
henceforth and let V1;2 ¼ V0ð1� "Þ. In the symmetric

case " ¼ 0, it can be verified that transmission is unity
for V0 þ �T2 ¼ 0 (for V0 < 0) and V0 þ �T2 ¼ ! (for
V0 <!). These nonlinear resonances can be regarded as
the continuation of the extended (i.e., perfectly transmit-
ting) states of the corresponding linear problem [22] to
nonvanishing�. As a result, the transmission curves (jR0j2,
jTj2) are tangent to the bisectrix in two points where t ¼ 1
(dashed lines in Figs. 2(a) and 2(b), respectively).
For the asymmetric case, " � 0, the resonances are

detuned differently for the k > 0 and k < 0 cases, leading
to a nonreciprocal transmission [see the solid lines in
Figs. 2(a) and 2(b)] with maximal t smaller than 1. In
particular, there exist two windows W1;2 of amplitude of

the incident wave R0 where we have three solutions for
k > 0 and only one for k < 0. Here the asymmetry be-
comes maximal. Figure 3 illustrates the different types of
solutions in the region W1 [see the points in the inset of
Fig. 2(a)]. The two low-amplitude solutions are very simi-
lar, as expected for weak nonlinearity [23].
Since the phenomenon is of nonlinear origin the asym-

metry depends on both frequency and amplitude. To quan-
tify its efficiency, in Fig. 4 we report the rectifying factor

f ¼ tðk; jTj2Þ � tð�k; jTj2Þ
tðk; jTj2Þ þ tð�k; jTj2Þ ; (5)
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FIG. 2 (color online). DNLS dimer, N ¼ 2, V0 ¼ �2:5, � ¼
1, jkj ¼ 0:1. Comparison between the symmetric case (" ¼ 0,
dashed lines) and the asymmetric one (" ¼ 0:05, solid lines).
(a) Transmission curves; the inset is an enlargement of the low-
amplitude region. The vertical lines mark the turning points of
the curves. Accordingly, the heavy lines on the horizontal axis
are the multistability windows W1;2 where the diode effect

maximally occurs. (b) Transmission coefficients as a function
of the transmitted intensity.
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which approaches �1 for maximal asymmetry. Note that,
although increasing " broadens the regions in which jfj is
relatively large, the overall transmitted intensity is reduced
as well.

Increasing the number N of nonlinear layers will con-
siderably increase the complexity of the transmission pat-
terns. Indeed, for large N, the transmitting (resp.
nontransmitting) solutions correspond to bounded (resp.
escaping) orbits of the map (3). Because of the mixed
phase space, t is nonvanishing only on a fractal set of the
parameter space [19]. The system thus exhibits a compli-
cated form of multistability, meaning that for a fixed input
one may have (infinitely) many outputs [18,19]. We thus
expect that the structure of the windows Wn will approach
that of a Cantor set in the large N limit. Indeed, Fig. 5
indicates that even for small N, the Wn shrink and

the texture of the regions where jfj & 1complicates
considerably.
What are the consequences of the above results on the

transmission of wave packets? In a nonlinear system where
the superposition principle no longer holds, the connection
between the two problems is not trivial. To address this
problem, we solved numerically the time-dependent DNLS

i _�n ¼ Vn�n ��nþ1 ��n�1 þ �nj�nj2�n (6)

on a finite lattice jnj � M with open boundary conditions,
for the case of the dimer discussed above. We take as the
initial condition a Gaussian wave packet

�nð0Þ ¼ I exp

�
�ðn� n0Þ2

w
þ ik0n

�
: (7)

The upper panels of Fig. 6 display the evolution of two
packets with the same I and opposite wave number k0
impinging on the nonlinear dimer. The asymmetry of their
propagation is manifest. Here, the parameters have been
chosen empirically to obtain the maximal asymmetry.
More precisely, we first measured the wave packet trans-
mission coefficient tp, defined as the ratio between the

transmitted norm
P

n>Nj�nj2 at the end of the run divided
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FIG. 3 (color online). Square modulus of the solutions corre-
sponding to the same incident amplitude jR0j2 ¼ 0:4 (marked by
full dots in the inset of Fig. 2), other parameters as in previous
figure. Upper panel: The three left-propagating solutions
corresponding to jTj2 ¼ 0:327, 0.377, 0.01 (top to bottom).
Lower panel: The right-propagating solution corresponding to
jTj2 ¼ 0:01. The oscillations are caused by the interference
between the incident and reflected waves (wave number 2k).
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FIG. 4 (color online). Contour plot of the rectifying factor (5)
for increasing asymmetry level ". Other parameters as in the
previous figure.
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FIG. 5 (color online). Upper panel: Transmission curves for
DNLS with N ¼ 4, linearly modulated parameter Vn ¼ V0½1þ
"f1� 2ðn� 1Þg=ðN � 1Þ�, other parameters as in the previous
figures. Comparison between the symmetric case (" ¼ 0, dashed
lines) and the asymmetric one (" ¼ 0:05, solid lines). Lower
panels: Contour plots of the rectifying factor (5) for increasing
asymmetry. Similar results are obtained for different types of
modulation.
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by the initial one
P

n<0j�nð0Þj2, as a function of jIj2.
The data of Fig. 6 correspond to the amplitude I for which
the transmission is maximal for the left-incoming packet
(tp ’ 0:8) and minimal for the right-incoming one

(tp’0:3). Although the packets are significantly distorted

after scattering, the Fourier analysis shows that they remain
almost monochromatic at the incident wave number
k0 (lower panels of Fig. 6). It is also noteworthy that
reflection is associated with the creation of a localized
excitation, strongly reminiscent of the nonlinear impurity
modes [15].

In conclusion, based on the DNLS model, we have
demonstrated a mechanism which leads to nonreciprocal
wave transmission. The new class of solutions found here
are of interest both theoretically as well as to envisage
possible experimental realizations in nonlinear layered
photonic or phononic systems. To the extent to which the
DNLS can be considered a realistic model for such media,
our results may open the way to novel strategies to control
and optimize wave propagation and to design devices for
sound or light rectification.
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FIG. 6 (color online). Numerical simulations of the propaga-
tion of Gaussian wave packets, Eq. (7) impinging on a DNLS
dimer. Here V0 ¼ �2:5, jk0j ¼ 1:57, " ¼ 0:05, M ¼ 500,
jIj2 ¼ 3, w ¼ 104 and n0 ¼ �250, respectively. Lower panels:
Power spectra of the real part of �n at times t ¼ 0 (green dashed
line) and t ¼ 250 (red solid line).
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