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We present evidence for the existence of a bound H dibaryon, an I ¼ 0, J ¼ 0, s ¼ �2 state with

valence quark structure uuddss, at a pion mass of m� � 389 MeV. Using the results of lattice QCD

calculations performed on four ensembles of anisotropic clover gauge-field configurations, with spatial

extents of L� 2:0, 2.5, 3.0, and 3.9 fm at a spatial lattice spacing of bs � 0:123 fm, we find anH dibaryon

bound by BH1 ¼ 16:6� 2:1� 4:6 MeV at a pion mass of m� � 389 MeV.
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It is now well established that quantum chromodynam-
ics (QCD), the theory describing the dynamics of quarks
and gluons, and the electroweak interactions, underlie all
of nuclear physics, from the hadronic mass spectrum to the
synthesis of heavy elements in stars. To date, there have
been few quantitative connections between nuclear physics
and QCD, but fortunately, lattice QCD is entering an era in
which precise predictions for hadronic quantities with
quantifiable errors are being made. This development is
particularly important for processes which are difficult to
explore in the laboratory, such as hyperon-hyperon and
hyperon-nucleon interactions for which knowledge is
scarce, primarily due to the short lifetimes of the hyperons,
but which may impact the late stages of supernovae
evolution. In this Letter we report strong evidence for a
bound H dibaryon, a six-quark hadron with valence struc-
ture uuddss, from nf ¼ 2þ 1 lattice QCD calculations

at light-quark masses that give the pion a mass of
m� � 389 MeV.

The prediction of a relatively deeply bound system with
the quantum numbers of �� (called the H dibaryon) by
Jaffe [1] in the late 1970s, based upon a bag-model calcu-
lation, started a vigorous search for such a system, both
experimentally and also with alternate theoretical tools.
Experimental constraints on, and phenomenological mod-
els of, the H dibaryon can be found in Refs. [2–4]. While
experimental studies of doubly strange hypernuclei restrict
the H dibaryon to be unbound or to have a small binding
energy, the most recent constraints on the existence of the

H dibaryon come from heavy-ion collisions at RHIC, from
which it is concluded that the H dibaryon does not exist in
the mass region 2:136<MH < 2:231 GeV [5], effectively
eliminating the possibility of a loosely bound H dibaryon
at the physical light-quark masses. Recent experiments at
KEK suggest there is a resonance near threshold in the
H-dibaryon channel [6].
The first study of baryon-baryon interactions with lattice

QCD was performed more than a decade ago [7,8]. This
calculation was quenched and with m� * 550 MeV. The
NPLQCD Collaboration performed the first nf ¼ 2þ 1

QCD calculations of baryon-baryon interactions [9,10] at
low energies but at unphysical pion masses. Quenched
and dynamical calculations were subsequently performed
by the HALQCD Collaboration [11,12]. A number of
quenched lattice QCD calculations [13–18] have searched
for the H dibaryon, but to date no definitive results have
been reported. Earlier work concluded that the H dibaryon
does not exist as a stable hadron in quenched QCD [17],
while more recent work [18,19] finds a hint of a bound
state. By inserting energy- and sink-dependent potentials
into the Schrödinger equation in the SU(3) limit, a hint of
an H dibaryon has been found in Ref. [20]; however, this
hint evaporates when SU(3) breaking is included [21].
In this work, Lüscher’s method [22–25] is employed to

extract two-particle scattering amplitudes below inelastic
thresholds from lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
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two-hadron system in the lattice volume from the sum of
the single-hadron masses is related to the scattering phase
shift, �ðqÞ, as is made explicit in Eq. (1). The Euclidean
time behavior of lattice QCD correlation functions of the
form C�ðtÞ ¼ h0j�ðtÞ�yð0Þj0i, where � represents an in-

terpolating operator with the quantum numbers of the
one-particle or two-particle systems under consideration,
determines the ground-state energies of the one-particle
and two-particle systems, E1 ¼ m and E2, respectively (we
focus only on the ground state of the two-particle system in
this work). The form of the interpolating operators and the
methodology used for extracting the energy shift are dis-
cussed in detail in Ref. [26]. For gauge-field configurations
that have different lattice spacings in the temporal and
spatial directions (anisotropic lattices), the two-particle

energy is given by E2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2=�2 þm2
p

, where � ¼
bs=bt is the lattice anisotropy. By computing the mass of
the particle and the ground-state energy of the two-particle
system, the squared momentum, q2 [in spatial lattice units
(s.l.u)], which can be either positive or negative, is deter-
mined by this relation. For s-wave scattering below inelas-
tic thresholds, q2 is related to the real part of the inverse
scattering amplitude through the eigenvalue equation [23]
(neglecting phase shifts in l � 4 partial waves)

q cot�ðqÞ ¼ 1

�L
S

�
q2
�

L

2�

�

2
�
; (1)

where the S function is given by

SðxÞ ¼ lim
�!1

X

jjj<�

j

1

jjj2 � x
� 4��: (2)

This relation provides a lattice QCD determination of the

value of the phase shift at the momentum
ffiffiffiffiffi

q2
p

.
Determining energy levels with the same quantum num-

bers in multiple volumes allows for bound states to be
distinguished from scattering states. A bound state corre-
sponds to a pole in the S matrix, and in the case of a single
scattering channel, is signaled by cot�ðqÞ ! þi in the
large volume limit. Writing q ¼ i� for two-particle states
that are negatively shifted in energy, E2 < 2m, in the lattice
volume, the volume dependence of the binding momentum
in the large volume limit follows directly from Eq. (1) and
is of the form [25]

� ¼ �þ g1
L
ðe��L þ ffiffiffi

2
p

e�
ffiffi

2
p

�LÞ þ � � � ; (3)

where � is the infinite-volume value of the binding mo-
mentum, under the assumption that � � m�, and g1 is
treated as a fit parameter. With calculations in two or more
lattice volumes that both have q2 < 0 and q cot�ðqÞ< 0, it
is possible to perform an extrapolation with Eq. (3) to the
infinite-volume limit to determine the binding energy of
the bound state, B1 ¼ �2=m. The range of nuclear
interactions is set by the pion mass, and therefore the use

of Lüscher’s method requires that m�L � 1 in order to
strongly suppress the contributions that depend upon the
volume as e�m�L [27].
Our present results are from calculations on four ensem-

bles of nf ¼ 2þ 1 anisotropic clover gauge-field configu-

rations at a pion mass of m� � 389 MeV, a spatial lattice
spacing of bs � 0:123ð1Þ fm, an anisotropy [28,29] of
� ¼ 3:50ð3Þ, and with spatial extents of 16, 20, 24, 32
lattice sites, corresponding to spatial dimensions of
L� 2:0, 2.5, 3.0, and 3.9 fm, respectively, and temporal
extents of 128, 128, 128, and 256 lattice sites, respectively.
The precision of the calculations is sufficiently high that
the exponential volume dependence of the single baryon
masses can be cleanly quantified. The � mass, unlike that
of the � and kaon, is found to have statistically significant
volume dependence, as shown in the left-hand panel of
Fig. 1. It is clear that the � mass on the 163 � 128
ensemble (m�L ¼ 3:9) is significantly higher than its
infinite-volume value and, more importantly, is shifted by
an amount that is comparable to the two-baryon energy
shifts. The deviation found in calculations on the
203 � 128 ensemble (m�L ¼ 4:8) is much less than that
of the 163 � 128 ensemble, but we choose to use only
calculations on the 243 � 128 ensemble (m�L ¼ 5:8)
and on the 323 � 256 ensemble (m�L ¼ 7:7) in the
bound-state analysis.
Lüscher’s method assumes that the continuum single-

hadron energy-momentum relation is satisfied over the
range of energies used in the eigenvalue equation in
Eq. (1). In order to verify that this is the case, single-hadron
correlation functions were formed with well-defined lattice
spatial momentum, k ¼ 2�

L n for jnj2 	 5. As the low-

lying states in the lattice volume have energies that are
small compared with the � mass, it is sufficient to deter-
mine the nonrelativistic energy-momentum relation,
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FIG. 1 (color online). Left-hand panel: The mass of the � as a
function of e�m�L, where L is the spatial extent of the lattice.
The leftmost (red) point and uncertainty is the infinite-volume
extrapolation of the other (blue) points calculated in lattice
volumes with spatial extents of, from left to right, L ¼ 32, 24,
20, and 16. The curve corresponds to the best straight-line fit.
Right-hand panel: The energy-momentum relation of the �
calculated on the 323 � 256 ensemble. The points (and uncer-
tainties) are the results of lattice calculations and the (red) curve
corresponds to the best fit (see text). The units of the vertical
axes in both plots are t.l.u., and of the horizontal axis of the right
plot are ðt:l:u:Þ2.
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E� ¼ M0 þ jkj2
2M1

� jkj4
8M3

2

þ � � � : (4)

The� energy as a function of momentum calculated on the
323 � 256 ensemble is shown in the right-hand panel of
Fig. 1, and yields M0, M1, M2 of 0.221 35(10)(05), 0.2231
(34)(13), 0.261(26)(04) t.l.u. (temporal lattice units),
respectively. Clearly the special-relativity limit of M0 ¼
M1 ¼ M2 is satisfied, but an uncertainty of �2% is intro-
duced into q2 from the uncertainties in the energy-
momentum relation. The use of relativistic or lattice
dispersion relations leads to similar conclusions.

In the absence of interactions, the ��-�N-�� system
is expected to exhibit three low-lying states as the mass
splittings between the single-particle states are (on the
323 � 256 ensemble)

2ðM� �M�Þ ¼ 0:013 17ð13Þð19Þ t:l:u:;
M� þMN � 2M� ¼ 0:003 397ð61Þð65Þ t:l:u: (5)

However, if interactions generate a bound state, it is ex-
pected that the splitting between the ground state and the
two additional states will be larger than estimates based
upon the single baryon rest masses. The effective mass plot
(EMP) for the� calculated on the 243�128 and 323�256
ensembles that have been optimized for the ground states
using the matrix-Prony method [19] are shown in the left-
hand panels of Fig. 2, and clear plateaus are identified.
The calculated EMP for the energy splittings between
the ��-�N-�� coupled channels (optimized using the
matrix-Prony method) and twice the energy of the �
(formed from the ratio of correlation functions) on the
243 � 128 and 323 � 256 ensembles are shown in the
right-hand panels of Fig. 2. The finite-volume binding
energies calculated in the L ¼ 16, 20, 24, and 32 lattice
volumes are 12.3(1.1)(4.0), 4.5(1.1)(1.3), 16.3(1.2)(1.4),
and 16.6(1.4)(3.1) MeV, respectively. In each lattice vol-
ume, the results are consistent with a single isolated ground
state with an energy that is below the �� threshold (and

considerably below the �N and �� thresholds). The
energy splittings and their uncertainties extracted from
both ensembles lead to negative values of q cot�, indicat-
ing that they both lie on the bound-state branch of the S
function [Eq. (2)], and thus leads us to identify the H
dibaryon. The extracted values of �i cot� from the 243�
128 and 323 � 256 ensembles and their uncertainties are
shown in Fig. 3, along with the infinite-volume extrapola-
tion implicit in Eq. (1), and made explicit in Eq. (3). The
H-dibaryon binding energy at this pion mass is found to be

BH1 ¼ 16:6� 2:1� 4:5� 1:0� 0:6 MeV; (6)

where the first uncertainty is statistical, the second system-
atic, the third is an estimate of the uncertainty in the
infinite-volume extrapolation, and the fourth is the uncer-
tainty from the energy-momentum relation. Combining the
various systematic uncertainties in quadrature gives BH1 ¼
16:6� 2:1� 4:6 MeV. A Monte Carlo propagation of the
uncertainties indicates that there is a probability greater
than 0.98 that the H dibaryon is bound at this pion mass.
In conclusion, we have presented strong evidence for the

existence of a bound H dibaryon from lattice QCD calcu-
lations at a pion mass of m� � 389 MeV. Our calculations
were performed in four lattice volumes, and a negatively
shifted ground state was found in all four volumes. In order
to avoid contamination from finite-volume modifications
to the � mass and interactions, only the results obtained in
the larger two volumes were used in the infinite-volume
extrapolation. Within the uncertainties, the ground-state
energies in the largest two volumes are the same, indicating
that both volumes are large compared with the H dibaryon
size. This is consistent with the calculated binding energy.
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FIG. 2 (color online). The EMPs for the � (left-hand panels)
and the splitting between the �� system and twice the � mass
(right-hand panels) calculated on the 243 � 128 (upper) and
323 � 256 (lower) ensembles. The units of both axes are t.l.u.
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FIG. 3 (color online). The results of the lattice QCD calcula-
tions of�i cot� versus q2=m2

� obtained using Eq. (1), along with
the infinite-volume extrapolation using Eq. (3). The dark (blue)
[light (green)] lines correspond to the statistical (systematic and
statistical uncertainties combined in quadrature) 68% confidence
intervals calculated on the 243 � 128 ensemble (lower) and
323 � 256 (upper) ensembles. The (red) point and its uncertainty
at �i cot� ¼ þ1 corresponds to the infinite-volume extrapola-
tion, the inner uncertainty being statistical and the outer being
the systematic and statistical combined in quadrature.
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Calculations were performed at only one lattice spacing.
However, given that lattice-spacing artifacts in these cal-
culations are expected to scale as Oðb2sÞ, we expect such
contributions to be small. Moreover, general arguments
based on the low-energy effective theory of the
Symanzik action suggest that Oðb2sÞ effects largely cancel
in forming the energy difference. Consequently, we expect
the observation of theH dibaryon to survive the continuum
extrapolation. However, the quark-mass dependence of the
H-dibaryon binding energy is presently unknown, so a
direct comparison of our result with experiment is not yet
possible. As with all such lattice calculations, we cannot
rule out the possibility of an additional deeper bound state
of the same quantum numbers in this channel that couples
weakly to the interpolating operators.

The results of the lattice QCD calculations presented in
this Letter provide the first clear evidence for a bound state
of two baryons directly from QCD. This is further strong
motivation for pursuing lattice QCD calculations in larger
volumes, at smaller lattice spacings, and over a range of
light-quark masses including those of nature, as the present
calculations demonstrate that the study of light (hyper)
nuclei directly from QCD is feasible.
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[24] M. Lüscher, Nucl. Phys. B354, 531 (1991).
[25] S. R. Beane et al. (NPLQCD Collaboration), Phys. Lett. B

585, 106 (2004).
[26] S. R. Beane et al., Prog. Part. Nucl. Phys. 66, 1 (2011).
[27] I. Sato and P. F. Bedaque, Phys. Rev. D 76, 034502 (2007).
[28] H.W. Lin et al. (Hadron Spectrum Collaboration), Phys.

Rev. D 79, 034502 (2009).
[29] R. G. Edwards, B. Joo, and H.W. Lin, Phys. Rev. D 78,

054501 (2008).
[30] R. G. Edwards and B. Joo, Nucl. Phys. B, Proc. Suppl.

140, 832 (2005).

PRL 106, 162001 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

22 APRIL 2011

162001-4

http://dx.doi.org/10.1103/PhysRevLett.38.195
http://dx.doi.org/10.1103/PhysRevLett.38.617
http://dx.doi.org/10.1103/PhysRevLett.38.617
http://dx.doi.org/10.1016/S0370-2693(00)00299-9
http://dx.doi.org/10.1143/PTPS.137.121
http://dx.doi.org/10.1143/PTPS.137.121
http://dx.doi.org/10.1088/0305-4616/9/10/005
http://dx.doi.org/10.1103/PhysRevC.75.022201
http://dx.doi.org/10.1103/PhysRevLett.73.2176
http://dx.doi.org/10.1103/PhysRevD.52.3003
http://dx.doi.org/10.1103/PhysRevLett.97.012001
http://dx.doi.org/10.1103/PhysRevLett.97.012001
http://dx.doi.org/10.1016/j.nuclphysa.2007.07.006
http://dx.doi.org/10.1016/j.nuclphysa.2007.07.006
http://dx.doi.org/10.1103/PhysRevLett.99.022001
http://dx.doi.org/10.1103/PhysRevLett.99.022001
http://dx.doi.org/10.1016/j.physletb.2009.02.003
http://dx.doi.org/10.1103/PhysRevLett.55.2539
http://dx.doi.org/10.1103/PhysRevLett.55.2539
http://dx.doi.org/10.1103/PhysRevLett.60.1371
http://dx.doi.org/10.1103/PhysRevLett.60.1371
http://dx.doi.org/10.1016/S0920-5632(99)85040-3
http://dx.doi.org/10.1016/S0920-5632(99)85040-3
http://dx.doi.org/10.1016/S0920-5632(00)91628-1
http://dx.doi.org/10.1016/S0920-5632(00)91628-1
http://dx.doi.org/10.1016/S0920-5632(03)01531-7
http://dx.doi.org/10.1016/S0920-5632(03)01531-7
http://dx.doi.org/10.1142/S0217732307023171
http://dx.doi.org/10.1142/S0217732307023171
http://dx.doi.org/10.1103/PhysRevD.81.054505
http://dx.doi.org/10.1103/PhysRevD.81.054505
http://dx.doi.org/10.1143/PTP.124.591
http://dx.doi.org/10.1143/PTP.124.591
http://arXiv.org/abs/1011.1695
http://dx.doi.org/10.1016/0550-3213(83)90528-X
http://dx.doi.org/10.1007/BF01211097
http://dx.doi.org/10.1016/0550-3213(91)90366-6
http://dx.doi.org/10.1016/j.physletb.2004.02.007
http://dx.doi.org/10.1016/j.physletb.2004.02.007
http://dx.doi.org/10.1016/j.ppnp.2010.08.002
http://dx.doi.org/10.1103/PhysRevD.76.034502
http://dx.doi.org/10.1103/PhysRevD.79.034502
http://dx.doi.org/10.1103/PhysRevD.79.034502
http://dx.doi.org/10.1103/PhysRevD.78.054501
http://dx.doi.org/10.1103/PhysRevD.78.054501
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254

