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Quantum evaporation of Callan-Giddings-Harvey-Strominger black holes is analyzed in the mean-field

approximation, incorporating backreaction. Detailed analytical and numerical calculations show that,

while some of the assumptions underlying the standard evaporation paradigm are borne out, several are

not. Furthermore, if the black hole is initially macroscopic, the evaporation process exhibits remarkable

universal properties (which are distinct from the features observed in the simplified, exactly soluble

models). Finally, our results provide support for the full quantum gravity scenario recently developed by

Ashtekar, Taveras, and Varadarajan.
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Introduction.—Since the early 1990s, a number of two-
dimensional (2D) black hole models have been studied to
gain further insight into the quantum dynamics of black
hole evaporation. Physically, the most interesting among
them is due to Callan-Giddings-Harvey-Strominger
(CGHS) [1]. Simplified versions of this model are exactly
soluble but also have important limitations discussed, e.g.,
in Refs. [2,3]. Therefore, results obtained in those models
are not reliable indicators of what happens in the full
CGHS dynamics. In this Letter, we present key results
from a new analysis of CGHS black holes using a mean-
field or semiclassical approximation. These findings are
surprising in two respects. First, several features of the
standard CGHS paradigm [2] of quantum evaporation are
not realized. Second, black holes resulting from a prompt
collapse of a large Arnowitt-Deser-Misner (ADM) mass
exhibit rather remarkable behavior: After an initial tran-
sient phase, dynamics of various physically interesting
quantities at right future null infinity Iþ

R flow to universal
curves, independent of the details of the initial collapsing
matter distribution. This universality strongly suggests that
information in the collapsing matter on I�

R cannot in
general be recovered at Iþ

R . However, we also find strong
evidence supporting the scenario of Ref. [4] in which the S
matrix from (left past infinity) I�

L to Iþ
R is unitary. This

distinction between unitarity and information recovery is a
peculiarity of 2D.

In this Letter, we summarize the main results. An ex-
tensive treatment can be found in Ref. [5], details of the
numerics in Ref. [6], and a thorough investigation of the
full quantum issues in Ref. [7].

Model.—In the CGHS model, geometry is encoded in a
physical metric g and a dilaton field �, coupled to N
massless scalar fields fi. Since we are in 2D with R2

topology, we can fix a fiducial flat metric � and write g
as gab ¼ ��ab. Then it is convenient to describe geometry
through � :¼ e�2� and � :¼ ��1�. The model has 2
constants: � and G with dimensions ½L��1 and ½ML��1.

Our investigation is carried out within the mean-field
approximation (MFA) of Refs. [4,7] in which one ignores
quantum fluctuations of geometry but not of matter. To
ensure a sufficiently large domain of validity, we must have
large N and we assume that each scalar field fi has the
same profile. Black hole formation and evaporation is
described entirely in terms of nonlinear partial differential
equations. Denote by z� the advanced and retarded null
coordinates of � so that �ab ¼ 2@ðazþ@bÞz�. We will set

@� � @=@z�. Then we have the evolution equations

hð�Þfi ¼ 0 , hðgÞfi ¼ 0 (1)

for matter fields and

@þ@��þ �2� ¼ GhT̂þ�i � �NG@@þ@� lnð���1Þ;
�@þ@� ln� ¼ �GhT̂þ�i � � �NG@@þ@� lnð���1Þ

(2)

for geometric fields � and �. The terms on the right side
are quantum corrections to the classical equations due to
conformal anomaly and encode the backreaction of quan-
tum radiation. As in 4D general relativity, there are con-
straints which are preserved by the evolution equations:

�@2��þ @��@� ln� ¼ GhT̂��i;
�@2þ�þ @þ�@þ ln� ¼ GhT̂þþi:

(3)

Here, �N :¼ N=24, and hT̂abi denotes the expectation value
of the stress-energy tensor of the N fields fi.
We solve this system of equations as follows. As is

usual, we assume that prior to zþ ¼ 0 the space-time is
given by the classical vacuum solution and matter falls in
from I�

R after that (see Fig. 1). Therefore, to specify
consistent initial data, it suffices to choose a matter profile
fþðzþÞ on I�

R and solve for the initial ð�;�Þ by using (3).
We then evolve ð�;�Þ to the future by using (2). Trivially,
fiðzþ; z�Þ ¼ fþðzþÞ from (1).
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We now discuss the interpretation of solutions via hori-
zons, singularities, and the Bondi mass. Note first that, in
analogous four-dimensional (4D) spherically symmetric
reductions, � is related to the radius r by � ¼ �2r2

[2,5]. Therefore, a point in the CGHS space-time ðM;gÞ
is said to be future marginally trapped if @þ� vanishes and
@�� is negative there [2,8]. The quantum corrected
‘‘area’’ of a trapped point is given by a :¼ ð�� 2 �NG@Þ.
The worldline of these marginally trapped points forms a
generalized dynamical horizon (GDH). As time evolves,
this area shrinks because of quantum radiation and finally
goes to zero. At this point, it meets the spacelike singular-
ity � ¼ 2 �NG@. The ‘‘last ray’’—the null geodesic from
this point to Iþ

R—is the future Cauchy horizon of the
semiclassical space-time. See Fig. 1.

We assume (and this is borne out by the simulations) that
the semiclassical space-time is asymptotically flat at Iþ

R in
the sense that, as zþ ! 1, the field � has the following
behavior along z� ¼ const lines:

� ¼ Aðz�Þe�zþ þ Bðz�Þ þOðe��zþÞ; (4)

where A and B are smooth functions of z�. A similar
expansion holds for �. The physical semiclassical metric
gab admits an asymptotic time translation ta. Its affine
parameter y� is given by e��y� ¼ Aðz�Þ. Up to an additive
constant, y� serves as the unique physical time parameter
at Iþ

R . TheMFA equations imply that there is a balance law
at Iþ

R [4,7], motivating new definitions of a Bondi mass
MATV

Bondi and a manifestly positive energy flux FATV:

MATV
Bondi ¼

dB

dy�
þ �Bþ �N@G

�
d2y�

dz�2

�
dy�

dz�

��2
�
; (5)

FATV ¼ �N@G

2

�
d2y�

dz�2

�
dy�

dz�

��2
�
2
; (6)

so that dðMATV
BondiÞ=dy� ¼ �FATV. In the classical theory

(@ ¼ 0), there is no energy flux at Iþ
R , and MATV

Bondi reduces

to the standard Bondi mass formula, which includes only
the first two terms in (5). Previous literature [1,2,8–10] on
the CGHS model used this classical expression also in the
semiclassical theory. But we will see that this traditionally
used Bondi mass MTrad

Bondi is physically unsatisfactory.

Scaling and the Planck regime.—It turns out that the
mean-field theory admits a scaling symmetry. Given any
solution (�, �, N, fþ) to all the field equations and a
positive number �, (��, ��, �N, fþ) is also a solution
[5,11]. Under this transformation, we have

gab ! gab; ðM;FATV; aGDHÞ ! �ðM;FATV; aGDHÞ;
where aGDH denotes the area of the GDH andM is either the
Bondi massMATV

Bondi or the ADM massMADM. This symme-

try implies that, physically, only the ratio M=N matters.
Thus, whether a black hole is ‘‘macroscopic’’ or ‘‘Planck
size’’ depends on the ratios M=N and aGDH=N rather than
on the values ofM or aGDH themselves. Hence we are led to
define

ðM?;M?
Bondi; F

?Þ ¼ ðMADM;M
ATV
Bondi; F

ATVÞ= �N and

m? ¼ M?
Bondijlast ray: (7)

To compare these quantities to the Planck scale, note that
there are subtleties as G@ is dimensionless in 2D; careful
considerations lead us to set M2

Pl ¼ @�2=G and �2Pl ¼
G@=�2 [5]. We can regard a black hole as macroscopic if
its evaporation time is much larger than the Planck time.
Since the energy flux is given by FHaw ¼ ð �N@�2=2Þ in the
external field approximation, this condition leads us to say
that a black hole is macroscopic ifM? � G@MPl. Note that
the relevant quantity is M? rather than M. The precise
nature of this scaling property was not appreciated until
recently. For example, in Ref. [12] it was noted thatN could
be ‘‘scaled out’’ of the problem and that the results are
‘‘qualitatively independent of N,’’ whereas in fact for a
given M they can vary significantly as N changes.
Similarly, the condition that a macroscopic black hole
should have large M=N appears in Ref. [9]. But it was
arrived at by physical considerations involving static solu-
tions rather than an exact scaling property of the full
equations.
Results.—Here we describe some key results from nu-

merical solution of the CGHS equations (1) and (2). We
consider two families of initial data, most conveniently

described in a ‘‘Kruskal-like’’ coordinate �xþ ¼ e�z
þ
.

The first is a collapsing shell used extensively in the
CGHS literature:

ð@fþ=@xþÞ2 ¼ M?

12
�ðxþ � 1=�Þ; (8)

parameterized by M?. The other is a smooth [fþðxþÞ is
C4], two-parameter ( ~M? and w) profile defined by

FIG. 1. A Penrose diagram of an evaporating CGHS black hole
in the MFA. The incoming state is the vacuum on I�

L , and left-
moving matter distribution on I�

R . The collapse creates a GDH,
which subsequently evaporates. Quantum radiation fills the
space-time to the causal future of matter. Inside the GDH, a
singularity forms in the geometry. It meets the GDH when the
latter shrinks to zero area. The last ray emanating from this
meeting point is a future Cauchy horizon.
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Z xþ

0
d �xþ

�
@fþ
@ �xþ

�
2 ¼ ~M?

12
ð1� eð�xþ�1Þ2=w2Þ4�ðxþ � 1=�Þ;

(9)

where � is the unit step function, w characterizes the width
of the matter distribution, and ~M? is related to the ADM
mass viaM? � ~M?ð1þ 1:39wÞ. Unraveling of the unfore-
seen behavior required high precision numerics [6], which
is crucial in the macroscopic mass limit that is of primary
importance. Numerical solutions from both classes of ini-
tial data were obtained for a range of massesM? from 2�10

to 16, a range of widths from w ¼ 0 to w ¼ 4, and �N
varying from 0.5 to 1000. Since we are interested in ini-
tially macroscopic black holes, here we will focus on
M? � 1 and, since the computations did bear out the
scaling behavior, on �N ¼ 1. We set @ ¼ G ¼ � ¼ 1.

Our numerical simulations show that, as expected, the
semiclassical space-time is asymptotically flat at Iþ

R , but,
in contrast to the classical theory, Iþ

R is incomplete; i.e., y�
has a finite value at the last ray. However, the dynamics
also exhibits some surprising features.

First, the traditionally used Bondi mass MTrad
Bondi can

become negative and large even when the GDH is macro-
scopic. For CGHS black holes, negativeMTrad

Bondi was known

to occur [13] but only for black holes which are of Planck
size even before evaporation begins. For initially macro-
scopic black holes, the standard paradigm assumed that
MTrad

Bondi is positive and tends to zero as the GDH shrinks (so

that one can attach a ‘‘flat corner’’ of Minkowski space to
the future of the last ray). Second, while the improved
Bondi mass MATV

Bondi does remain positive throughout evo-

lution, at the last ray it can be large. In fact this ‘‘end state’’
exhibits a universality shown in Fig. 2, where m?, the final
value of M?

Bondi, is plotted against the rescaled ADM mass

M? for a range of initial data. It is clear from the plot that
there is a qualitative difference between M? * 4 and
M? & 4. In the first case the value of the end-point
Bondi mass is universal: m? � 0:864. For M? < 4, on
the other hand, the value of m? depends sensitively on
M?. Thus in the MFA it is natural to regard CGHS black
holes withM? * 4 as macroscopic and those withM? & 4
as microscopic. Past numerical studies [3,10,12,13] missed
the universal behavior mainly because they investigated
only microscopic cases (M? � 2:5 in all prior studies).

Third, for macroscopic (M? * 4) black holes that form
promptly, after early transient behavior, dynamics of physi-
cal quantities at the GDH and at Iþ

R approach universal
curves. By promptly, we mean the characteristic width of
the ingoing pulse is less than that of the initial GDH (more
precisely,w=M? & 0:1). This is most clearly demonstrated
in the behavior of the flux F?, or equivalently the Bondi
mass M?

Bondi, measured at Iþ
R . An appropriately shifted

affine parameter y�sh ¼ y� þ const provides an invariantly

defined time coordinate, and Fig. 3 shows the universality
of evolution of F? and M?

Bondi with respect to it. The shift

aligns the y� coordinates among the solutions, which we
are free to do as y� is only uniquely defined to within a

(physically irrelevant) additive constant. Finally, note that
this universality is qualitatively different from the known
uniqueness results for solutions of certain simplified sol-
uble models [14]. It occurs only if the black hole is initially
macroscopic, formed by a prompt collapse. And in this
case, after the transient phase, the behavior of physical
quantities at Iþ

R does not even depend on the mass.
The situation with universality bares parallels to the

discovery of critical phenomena at the threshold of gravi-
tational collapse in classical general relativity [15] where
universal properties were discovered in a system that, at the
time, seemed to have been already explored exhaustively.
Of course, numerical investigations cannot prove univer-
sality; here we studied only two families of initial data.
However, since these families, in particular, the distribu-
tion, are not ‘‘special’’ in any way, we believe this is strong
evidence that universality is a feature of the ‘‘pure’’ quan-
tum decay of a GDH, pure in that the decay is not con-
taminated by a continued infall from I�

R .
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Finally, along the last ray, our simulations show that
curvature remains finite. Thus, contrary to wide spread
belief, based in part on Ref. [3], and in contrast to sim-
plified and soluble models, there is no ‘‘thunderbolt singu-
larity’’ in the metric (for details, see [5]).

Conclusions.—In the external field approximation, the
energy flux is initially zero and, after the transient phase,
quickly asymptotes to the Hawking value FHaw ¼
�N@�2=2 � 0:5 for the constants used in the simulations
shown here. In the MFA calculation, on the other hand, at
the end of the transient phase the energy flux is higher than
this value, keeps monotonically increasing, and is about
70% greater than FHaw whenMBondi 
 2 �NMPl (see Fig. 3).
One might first think that the increase is because, as in 4D,
the black hole gets hotter as it evaporates. This is not so:
For CGHS black holes, THaw ¼ �@=2� and � is an abso-
lute constant. Rather, the departure from FHaw ¼ 0:5
shows that, once the backreaction is included, the flux fails
to be thermal at the late stage of evaporation, even while the
black hole is macroscopic. This removes a widely quoted
obstacle against the possibility that the outgoing quantum
state is pure in the full theory.

In the classical solution, Iþ
R is complete and its causal

past covers only a part of space-time; there is an event
horizon. But Iþ

R is smaller than I�
L in a precise sense: z�,

the affine parameter along I�
L , is finite at the future end of

Iþ
R . This is why pure states on I�

L of a test quantum field

f̂� on the classical solution evolve to mixed states on Iþ
R

[4,7], i.e., why the S matrix is nonunitary. In the MFA, by
contrast, our analysis shows that as expected y� is finite at
the last ray on Iþ

R . Thus, I
þ
R is incomplete whence we

cannot even ask if the semiclassical space-time admits an
event horizon; what forms and evaporates is, rather,
the GDH. However, this incompleteness also opens the

possibility that �Iþ
R , the right null infinity of the full quan-

tum space-time, may be larger than Iþ
R and unitarity may

be restored. Indeed, since there is no thunderbolt, space-
time can be continued beyond the last ray. In the mean-field
theory, the extension is ambiguous. But it is reasonable to
expect that the ambiguities will be removed by full
quantum gravity [16]. Indeed, since we have only
ð0:864=24ÞMPl of Bondi mass left over at the last ray per
evaporation channel (i.e., per scalar field), it is reasonable
to assume that this remainder will quickly evaporate after
the last ray and MATV

Bondi and FATV will continue to be zero

along the quantum extension �Iþ
R of Iþ

R . The form of FATV

now implies that �Iþ
R is ‘‘as long as’’ I�

L and hence the S
matrix is unitary: The vacuum state on I�

L evolves to a

many-particle state with a finite norm on �Iþ
R [4,7]. Thus

unitarity of the S matrix follows from rather mild assump-
tions on what transpires beyond the last ray.

Note, however, this unitarity of the S matrix from I�
R to

the extended Iþ
R does not imply that all the information in

the infalling matter on I�
R is imprinted in the outgoing state

on �Iþ
R . Indeed, the outgoing quantum state is completely

determined by the function y�ðz�Þ, and our universality
results imply that, on Iþ

R , this function depends only on
MADM and not on further details of the matter profile [5].
Since only a tiny fraction of Planck mass is radiated per

channel in the portion of �Iþ
R that is not already in Iþ

R , it
seems highly unlikely that the remaining information can
be encoded in the functional form of y�ðz�Þ in that portion.
Thus, information in the matter profile on I�

R will not all be

recovered at �Iþ
R even in the full quantum theory of the

CGHS model. This contradicts a general belief; indeed,
because the importance of y�ðz�Þ was not appreciated and
its universality was not even suspected, there have been
attempts at constructing mechanisms for recovery of this
information [9].
In summary, in 2D there are two distinct issues:

(i) unitarity of the S matrix from I�
L to �Iþ

R and

(ii) recovery of the infalling information on I�
R at �Iþ

R .
The distinction arises because right and left pieces of I�
do not talk to each other. In 4D, by contrast, we have only
one I� and only one Iþ. Therefore if the S matrix from
I� to Iþ is unitary, all information in the ingoing state at
I� is automatically recovered in the outgoing state at Iþ.
To the extent that the CGHS analysis provides guidance for
the 4D case, it suggests that unitarity of the Smatrix should
continue to hold also in 4D [7].
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