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Torsional degrees of freedom play an important role in modern gravity theories as well as in condensed

matter systems where they can be modeled by defects in solids. Here we isolate a class of torsion models

that support torsion configurations with a localized, conserved charge that adopts integer values. The

charge is topological in nature, and the torsional configurations can be thought of as torsional ‘‘monopole’’

solutions. We explore some of the properties of these configurations in gravity models with a nonvanishing

curvature and discuss the possible existence of such monopoles in condensed matter systems. To

conclude, we show how the monopoles can be thought of as a natural generalization of the Cartan spiral

staircase.
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The analogy between geometry and defects in gravity
theories and in theories of elasticity in solids is an old and
well-developed field of study [1–7]. Disclinations and dis-
locations in crystals are defects in the ordered lattice which
carry finite curvature and torsion, respectively.
Transporting a particle around a disclination (dislocation)
produces a nonzero rotation (translation) by the end of the
cycle. Dislocations are particularly interesting because,
while sources of curvature are ubiquitous in the natural
Universe, the effects of torsion are less pronounced experi-
mentally [8,9]. In solids, however, dislocations affect many
material properties and are present even in the cleanest
materials. Thus condensed matter systems can provide
useful laboratories to study torsion.

The defects that we will describe cannot be described by
the classical geometric theory of elasticity. Instead, these
defects may occur in materials described by micropolar
elasticity theory [10]. Micropolar elasticity theory (or
Cosserat elasticity) is a simple extension of classical elas-
ticity to include local orientational degrees of freedom of
the constituent particles or molecules of the elastic me-
dium. The defect we investigate, which we dub a torsional
‘‘monopole’’ (TM), does not require a lattice deformation
but a deformation texture in the local rotational degrees of
freedom. Such defects could exist in biological or granular
systems (two common systems described by micropolar
elasticity) and may affect solids with a strong coupling
between orbital electronic motion and local spin or orbital
degrees of freedom. The structure of a TM is shown in
Fig. 1, and we will present a general treatment of these
defects in a gravitational context in flat and curved space
and give an explicit construction of a TMwhile showing its
relation to defects in solids and the ‘‘Cartan spiral stair-
case.’’ It is important to note that these defects lie outside
the typical topological defects found in gauge theories in,
e.g., Refs. [11,12]. We begin with a simple formulation
of our construction in flat space. To isolate the purely

torsional degrees of freedom, we will begin with three
highly constraining Ansätze. In order to focus on the
minimal, kinematical properties of torsional defects, and
to make the theory as generalizable as possible to various
condensed matter and gravity theories, we will not assume
an underlying dynamical geometric theory. We begin with
the typical ingredients of Einstein-Cartan gravity, but we
will not impose the Einstein-Cartan or any other dynamical
equations of motion. For generality, we will work with the
4D Lorentzian theory, but all of the major results
are applicable to 3D Euclidean systems. Thus, we take

FIG. 1 (color online). A cross section through the origin of a
torsion monopole with Q ¼ 1. The globe picks out three direc-
tions which form an orthonormal triad. The monopole pictured
has a radius of five lattice sites, and it is formed by rotating each
globe along a radial line directed from the origin by an amount
proportional to the radius of the lattice site, until the angle of
rotation reaches 2� at r ¼ 5.
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the geometry to be described by a Spinð3; 1Þ ’ SOð3; 1Þ ’
SLð2;CÞ gauge theory, whose connection coefficient in a
local trivialization is the spin connection !, and a (co-)
frame (tetrad) field e, which is a one-form taking values in
the adjoint representation of Spinð3; 1Þ. The three Ansätze
we will make are (i) the manifold has the topology of R4

and the metric induced from the coframe eI is the flat
Minkowski metric, i.e., in Cartesian coordinates g ¼
�IJe

I � eJ ¼ �dt2 þ dx2 þ dy2 þ dz2; (ii) the spin con-
nection !IJ has a vanishing curvature and, thus, we have a
Weitzenböck spacetime; and (iii) the spin connection
asymptotically approaches the Levi-Civita connection
(the special connection compatible with eI) at spatial in-
finity so that limr!1! ¼ �½e�. We refer to a geometry
satisfying these conditions as a torqued geometry for rea-
sons that will become clear.

We will denote the Levi-Civita connection associated
with the tetrad by � ¼ �½e�, i.e., D�e

I ¼ deI þ �I
J ^

eJ ¼ 0. For any connection A let the curvature RA ¼ dAþ
A ^ A. Since the metric is Minkowski, R� ¼ 0, and since
the space is Weitzenböck, R! ¼ 0 as well. However, we do
not assume that the spin connection is compatible with the
tetrad, and the (generically nonzero) torsion is given by the
usual expression TI ¼ D!e

I ¼ deI þ!I
J ^ eJ. The as-

sumption that the spin connection asymptotically ap-
proaches the Levi-Civita connection at spatial infinity
implies that limr!1TI ¼ 0. The rate at which the torsion
must tend to zero will be fixed later. It will be useful to
express the spin connection ! in terms of the Levi-Civita
connection � by

!I
J ¼ �I

J þ CI
J; (1)

where CIJ ¼ C½IJ�
�dx

� is the contorsion tensor [13].

In Minkowski space all flat connections are gauge re-
lated [since �1ðR4Þ ¼ 0], and, thus, we can express the
spin connection in terms of the Levi-Civita connection as
(in the fundamental representation, where we drop explicit
indices)

! ¼ g�g�1 � dgg�1: (2)

The group element g ¼ gðxÞ is the ‘‘relative gauge’’ be-
tween the spin connection and the tetrad. The term torqued
geometry is in reference to the relationship between the
spin connection and Levi-Civita connection in Eq. (2).
Using Eqs. (1) and (2) we have

C ¼ g�g�1 � dgg�1 � � ¼ �D�gg
�1: (3)

We will occasionally use the ‘‘trivial’’ gauge where the

tetrad in Cartesian coordinates is e
0I ¼ �I

�dx
� and the

corresponding Levi-Civita connection �½e0� ¼ 0. For e
0 ¼

heh�1 the spin connection is

!0 ¼ h!h�1 � dhh�1 ¼ �dg0g0�1 with g0 ¼ hgh�1:

(4)

One of the key properties of the torsional configurations
that follows from our flatness Ansatz is the existence of a
conserved current. To see this, consider the curvature of the
spin connection expressed in terms of the contorsion ten-
sor. From the definition we have

R! ¼ R� þD�Cþ C ^ C ¼ D�Cþ C ^ C ¼ 0;

which follows since both R� and R! ¼ 0. Now consider

� � TrD

�
1

4�2
ðD�Cþ C ^ CÞ ^ ðD�Cþ C ^ CÞ

�

¼ 1

4�2
dTrD

�
C ^D�Cþ 2

3
C ^ C ^ C

�
(5)

with TrDð�Þ ¼ 1
DTrð�Þ, where D is the dimension of the

representation. Defining the topological current three-form

�ð3Þ
C � 1

4�2 TrDðC ^D�Cþ 2
3C ^ C ^ CÞ and recognizing

that� ¼ 0, we see that the current is conserved: d�ð3Þ
C ¼ 0.

The current allows us to define a conserved charge. To
do this, we will first fix our asymptotic boundary condi-
tions on the torsion so that the defects we will consider are
spatially isolated. It is sufficient to assume that in the trivial
gauge C, and thus T, fall off like 1

r as r ! 1. Thus, in this

gauge the relative gauge given in Eq. (4) must be such that
g0 ! const near spatial infinity. This allows for the stan-
dard compactification � ’ R3 [ f1g ’ S3 for a spatial
slice �. Because of the assumed falloff conditions on the
torsion, the flux of current through the timelike cylinder at
asymptotic infinity is zero, so we define the conserved
torsional charge

Q �
Z
�
�ð3Þ
C ¼ � 1

12�2

Z
�
TrDðC ^ C ^ CÞ: (6)

One can also define a conserved dual current by taking the
internal Hodge dual of one of the components in the four-
form of (5); however, the corresponding charge vanishes
identically for our class of geometries.
The conservation of the charge is a purely kinematic

property, independent of any dynamics to which the TMs
are subjected. Indeed, the charges are topological in nature,
and, under small deformations f�e;�!g that preserve the
flatness constraints, we have �Q ¼ 0. In fact, Q takes
quantized integer values as we will now show.
First, we note that, despite its similarity to the Chern-

Simons functional, the charge Q is different in that it is
identically gauge invariant under both large and small
gauge transformations. Thus, we can choose a convenient
gauge in order to compute the charge. We choose the trivial
gauge where the contorsion is given by C ¼ �dg0g0�1

[cf. Eq. (4)]. Thus in this gauge using Eq. (6), we have
[using the shorthand notation ðdgg�1Þ3 ¼
TrDðdgg�1 ^ dgg�1 ^ dgg�1Þ]

Q ¼ 1

12�2

Z
�
ðdg0g0�1Þ3 ¼ 1

12�2

Z
�
ðdgg�1Þ3: (7)
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We recognize the last line as the index or winding number
of the map g:� ! Spinð3; 1Þ. The winding number is well
defined since Spinð3; 1Þ has SUð2Þ as its maximal compact
subgroup. Such maps are classified by �3½Spinð3; 1Þ� ¼ Z
and thus Q 2 Z.

To construct explicit configurations with nonzero
charge, we borrow from well-known results in SUð2Þ
Yang-Mills theories (see, e.g., [14]). We will work in the
trivial gauge in Cartesian coordinates so the tetrad is eI� ¼
�I
� and �IJ ¼ 0. In this gauge! ¼ �dg0g0�1, and defining

�i ¼ 1
2 �ijk�

j�k, where �I are generators of the Clifford

algebra and i; j; k ¼ 1; 2; 3; . . . are spatial indices, we take
g0 to be [(i) labels which TM]

g0 ¼ gðiÞ ¼ cosð	ðiÞÞ1þ sinð	ðiÞÞ
xa � xaðiÞ
j ~x� ~xðiÞj �a; (8)

where 	ðiÞ ¼ 	ðiÞð�rðiÞÞ with �rðiÞ ¼ j ~x� ~xðiÞj is any con-

tinuous and differentiable function that monotonically in-
creases from 0 at �rðiÞ ¼ 0 to � at �rðiÞ ¼ 1. To ensure

the configuration is well behaved, we assume
@	ðiÞ
@�rðiÞ

j�rðiÞ¼0 ¼ @	ðiÞ
@�rðiÞ

j�rðiÞ¼1 ¼ 0. For a TM of charge q

located at the origin ð ~xðiÞ ¼ 0Þ, the contorsion is

Cij ¼ �2½�ijkX̂kd	þ sinð	Þ cosð	Þ�ijkdX̂k

� 2sin2ð	ÞX̂½idX̂j��: (9)

The torsional charge for this configuration can be explicitly
computed to yield Q ¼ 1. We can then use this group
element to generate multiple TM solutions of the generic
form C ¼ �dg0g0�1 with g0 ¼ gq1ð1Þg

q2
ð2Þ . . . g

qN
ðNÞ and charge

Q ¼ q1 þ q2 þ � � � þ qN .
It is worthwhile to address a potential source of con-

fusion stemming from the analogous geometric constructs
in Yang-Mills theory. We have referred to the configura-
tions above as monopoles because they are spatially iso-
lated torsional defects of a topological nature. However,
typical nomenclature in Yang-Mills theories associates
monopoles with �2ðGÞ and instantons with �3ðGÞ.
Despite similarities to analogous structures in Yang-Mills
theories, the TM has some fundamental differences. The
key property that allows for a stable, gauge invariant
topological structure in three dimensions is that the topo-
logical charge can be identified not with a single
Chern-Simons functional but with the difference of two
Chern-Simons functionals:Q ¼ R

�½CSð!Þ � CSð�Þ�. The
resulting quantity is invariant under large gauge transfor-
mations, unlike either of its two constituents, but the
quantity picks out the winding number of the relative gauge
between the two connections.

Our major results can be extended to a class of curved
spacetimes. Given a tetrad e and its associated �½e�, we
focus on the class of geometries in which the spin connec-
tion differs from �½e� only by a relative gauge:

! ¼ g�g�1 � dgg�1; R! ¼ gR�g
�1: (10)

The contorsion is still given by Eq. (3), but the curvature is
nonvanishing so generically the contorsion satisfies the
condition D�Cþ C ^ C ¼ gR�g

�1 � R�. Nevertheless,
there is still a conserved current since

� ¼ 1

4�2
TrDðR! ^ R! � R� ^ R�Þ ¼ 0 (11)

and � ¼ d½CSð!Þ � CSð�Þ� � d~J ¼ 0. The current
three-form is entirely torsional in nature as it can be written

~J ¼ �ð3Þ
C þ 1

2�2
TrDð2C ^ R�Þ: (12)

This current is conserved, and being the difference of two
Chern-Simons functionals that differ by a relative gauge g,
we clearly haveQ ¼ 1

12�2

R
S3ðdgg�1Þ3. Thus, the charge is

topologically quantized.
Now we return to flat space to discuss the analogy with

defects in solids. Thus far, we have viewed torqued
geometries as a deformation of the spin connection by a
relative gauge transformation. To model a TM, it is con-
venient to make a (true, not relative) gauge transformation
to absorb the deformation entirely in the tetrad. It is
sufficient to work with 3D Euclidean space, and we denote
the triad by Ei

a. The geometric variables describing a

torqued geometry before the transformation are E ¼ E
0
,

and ! ¼ g�
0

g�1 � dgg�1, where E
0

is a fiducial

Euclidean flat tetrad and �
0

¼ �½E0 � is the corresponding
Levi-Civita connection. Gauge transforming by g�1, we

obtain E0 ¼ g�1E
0

g and !0 ¼ g�1!g� dg�1g ¼ �
0

. Now

the deformation induced by the relative gauge is encoded
in the triad as opposed to the spin connection. For a single
TM of charge q located at the origin, the relative gauge

g ¼ cos½q	ðrÞ�1þ i sin½q	ðrÞ�x̂aE
0 a

i 

i, where 
i are the

Pauli matrices, is an element of SUð2Þ at each point. For

clarity, fix the fiducial triad to be E
0 i

a ¼ �i
a. We focus on the

behavior of E0i
a along any ray beginning at the origin and

ending at asymptotic infinity. The gauge transformation
represents a rotation at each point around the axis defined
by the ray. Since 	ð0Þ ¼ 0 at the origin and monotonically
increases to 	ð1Þ ¼ �, the relative gauge represents a
spatial rotation of the fiducial triad around the radial axis
such that the rotation is the identity at the origin and
increases monotonically to 2�q at infinity. The direction
is clockwise or counterclockwise depending on the sign
of q.
The realization of a model for the TM in a condensed

matter system points out some of the deficiencies of the
classical geometric theory of elasticity. The classical geo-
metric theory of dislocations and disclinations has the
Euclidean Poincaré group G ¼ SOð3Þ2Tð3Þ as a gauge
group, where Tð3Þ is the set of three-dimensional trans-
lations [15]. Disclinations are defects associated with
the rotational degrees of freedom, and in this model, the
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absence of disclinations is associated with the vanishing of
the curvature of the spin connection R! ¼ 0 [2–6]. Thus,
the TM, which can exist in geometries with a vanishing
curvature, is not composed of disclinations. Next we con-
sider pure dislocations which are described by a nonzero
torsion associated with the translation group. In a solid we
have a lattice which breaks the continuous translation
symmetry down to a discrete subgroup. The topological
charges of defects in the translation sector are thus given by
�n½Tð3Þ=Z � Z � Z� ¼ �nðT3Þ, where �n is the nth ho-
motopy group, Z � Z � Z represents the space of 3D dis-
crete translations, and T3 is the 3-torus. The only
topologically stable defects are line defects [dislocations
due to �1ðT3Þ ¼ Z � Z � Z], and thus our pointlike TM is
not a dislocation. In fact, these arguments are immediately
apparent if we choose the gauge for the TM where the
entire deformation is in the triad. This deformation does
not require a lattice deformation and thus is not effectively
captured in the classical elasticity theory.

To support theTM,we need to consider the local rotational
degrees of freedomof the objects forming the elasticmedium
and thus materials described by micropolar elasticity [5,10].
We imagine molecules or grains to which a local triad is
associated. This set of axes describes the local orientation of
the molecule. A fiducial geometry has all the local triads
aligned, and the TM is a defect texture centered at the origin
(see Fig. 1). The molecules along a radial ray are rotated
around the ray axis. If the orientations are realigned outside a
radius R, then the topological charge is equal to the number
of revolutions carried out between r ¼ 0 and r ¼ R. In the
continuum theory, the gauge group (in the 3D Euclidean
case) isG ¼ SUð2Þ, and the isometry group is the subgroup
that leaves the triad fixed, namely, the rotations by 2� form-
ing a Z2 subgroup. Thus, the relevant homotopy group is
�3½SUð2Þ=Z2� ¼ �3½SOð3Þ�. The existence of the TM is a
reflection of the property �3½SOð3Þ� ¼ Z.

These defects will affect the elastic behavior of micro-
polar media, but perhaps it is more interesting to consider
possible effects in the electronic behavior of solids.
Although we leave this analysis open for future work, we
comment that these defects would likely affect the elec-
tronic behavior of materials with strong spin-orbit coupling
since they are very sensitive to the local orientation of the
orbitals. In fact, the new class of (3þ 1)-dimensional
topological insulators [16,17] at low energy are described
by the massive Dirac Hamiltonian H ¼ pi�

i þm�0 for a
trivial geometric background. When coupled to a back-
ground torsion monopole, H gains a term proportional to
fq@r	ðrÞ þ r�1 sin½2q	ðrÞ�g�5. This coupling to the axial
current will cause Dirac fermion states to be repulsed or
attracted by a TM depending on the amount of left- or
right-handed character mixed into the state. Additionally,
half-integer spin particles which adiabatically pass through
a TM from the origin to infinity pick up a phase of�1 from
the 2� spin rotation which can lead to interference effects.
Both of these effects will affect the electronic structure
near a TM and may be measurable.

Using TM we can generalize Cartan’s spiral staircase to
the spherical case (which we might refer to as Cartan’s
spiral stairway to heaven). Cartan’s spiral staircase is the
name given to a model for a space with torsion first
described in 1922 [5,7,18]. We will choose a particular
	ðrÞ that makes the analogy as clear as possible. Suppose
one were sitting on the surface of a sphere (say, the Earth)
at radius r0 and desired to build a spiral stairway analogous
to Cartan’s spiral staircase but oriented in the radial direc-
tion. Our model is easiest to understand by rotating the
Euclidean triad and fixing the spin connection to be
!ij ¼ 0. Take the triad E0 above with

	ðrÞ ¼
8<
:
0 for 0 � r � r0;
�
� ðr� r0Þ for r0 � r � r0 þ q0�;
� for r0 þ � � r:

(13)

This gives a TM localized within radius r0 þ q0� with
torsional charge Q ¼ q0. By using the geometric descrip-
tion above, this TM is easy to visualize. Traveling from the
sphere at r0 outward to r0 þ q0�, the triad rotates by q0 full
turns around the radial ray. To extend the stairway, we can
just increase the topological charge by sending q0 ! 1,
which generates Cartan’s spiral stairway to heaven.
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