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Treating the epithelium as an incompressible fluid adjacent to a viscoelastic stroma, we find a novel

hydrodynamic instability that leads to the formation of protrusions of the epithelium into the stroma. This

instability is a candidate for epithelial fingering observed in vivo. It occurs for sufficiently large viscosity,

cell-division rate and thickness of the dividing region in the epithelium. Our work provides physical

insight into a potential mechanism by which interfaces between epithelia and stromas undulate and

potentially by which tissue dysplasia leads to cancerous invasion.
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Interfaces between epithelial tissues and stromas often
present different degrees of undulations. In precancerous
abnormalities of epithelial tissues—called dysplasia—
such undulations are often especially pronounced and can
evolve into long fingers that extend into the stroma [1]. In a
stratified epithelium, an important indicator of tissue dys-
plasia is the thickness of the region in which cells divide.
While in healthy epithelia only the cells directly at the
basement membrane divide, cell division in dysplastic
tissues takes place in a larger domain and, in severe cases,
throughout the entire epithelium.

The instability of monolayered epithelia has been mod-
eled as the result of a buckling phenomenon [2]. Other
studies have used the framework of nonlinear elasticity to
describe the instabilities in growing tissues [3]. As moti-
vated in earlier work [4] and shown experimentally [5,6],
tissues behave as viscous liquids on long time scales. This
is illustrated, for example, by the existence of surface
tension at tissue boundaries [7–10]. Theoretically, viscous
descriptions have already been applied in other contexts of
tissue growth [11]. Here, we propose that the fingering of a
stratified epithelium originates from viscous friction ef-
fects driven by cell division. We treat the epithelium as a
viscous fluid lying on top of a viscoelastic stroma (Fig. 1).
As the epithelium consists mostly of cells, the stroma is
made of a network of collagen and elastin fibers, constantly
remodeled by fibroblasts present at low densities [12]. On
short time scales, this network responds elastically to
deformations, but its constant remodeling by fibroblasts
allows the tissue to flow on long time scales. A qualitative
understanding of the full viscoelastic picture can be gained
by interpolating between the results of the elastic and
viscous regimes. In this Letter, we present these two limit
cases.

For the sake of simplicity, the epithelium and the stroma
are each considered incompressible. In this case, the con-
tinuity equation for the epithelium reads @�v� ¼ kp,

where kp is the global production rate of cells, taking

into account cell division and apoptosis. The associated
constitutive relation is that of an incompressible fluid with
shear viscosity � [13]: �0

�� ¼ �ð@�v� þ @�v�Þ. Here the
total stress tensor ��� has been split into a dynamic part

�0
�� and a velocity-independent part�pe���, where pe is

the tissue pressure. The system of equations describing the
epithelium is completed by the force-balance condition
@���� ¼ 0, which leads to

�@�@�v� þ �@�kp � @�pe ¼ 0: (1)

Similarly, for an elastic stroma, we obtain

�@�@�u� � @�ps ¼ 0; (2)

together with @�u� ¼ 0, where u� is the displacement
field, � the shear modulus, and ps the pressure.
Boundary conditions are as follows. The stress vanishes

at the apical surface of the epithelium, taking into account
the Laplace pressure due to the epithelium apical surface
tension �a. At the bottom of the stroma, the displacement
vanishes. At the epithelium-stroma interface, the normal

FIG. 1 (color online). Schematic representation of a stratified
epithelium sitting on top of its underlying stroma. The arrows
represent the qualitative profile of the cell-velocity field driven
by cell division. The epithelium extends a fingering protrusion
into the stroma, driven by viscous shear stress.
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component of the velocity is continuous and the normal
component of the displacement of the stroma is equal to the
variation of the interface location. The discontinuity of the
normal component of the stress is given by Laplace’s law
with interfacial tension �i. Finally, the tangential compo-
nents of the stress are continuous and equal to a finite
surface-friction term with coefficient �.

The physical origin of the instability discussed in this
work can be qualitatively understood as follows. Consider
a fingering protrusion of the epithelium into the stroma and
assume for simplicity that cell division occurs over the
entire height of the protrusion (Fig. 1). The dividing cells
create a flow in the epithelium. Since the cells above the
finger have more dividing layers underneath them than
their neighbors, they flow toward the apical surface faster
than the cells in the adjacent regions. This results in a shear
flow of cells within the epithelium. The associated shear
stress builds up pressure at the bottom of the finger, favor-
ing the development of the protrusion.

Let us now discuss the solution of our model for the flat,
unperturbed epithelium-stroma interface. Here and in the
following, we make the assumption that, due to the lack of
nutrients and growth factors away from the stroma, the
overall cell production decreases exponentially over a
length scale l with increasing distance �z from the
epithelium-stroma interface: kp ¼ k expð��z=lÞ � k0
[14]. When the interface is flat, the cell velocity and
pressure in the epithelium read

v0
z ¼ kl

�
1� exp

�
� z� L

l

��
� k0ðz� LÞ; (3)

p0
e ¼ 2�

�
k exp

�
� z� L

l

�
� k0

�
; (4)

respectively, where the origin of the z coordinate is at
the bottom of the stroma and L is the stroma thickness.
The height of the epithelium H is determined from the
condition that the cell velocity vanishes at its apical
surface. Together with Eq. (3), this condition reads k0 ¼
kl=H½1� expð�H=lÞ�. The deformation of the stroma
vanishes everywhere (u0� ¼ 0).

We now address the question of the stability of the
system under a small perturbation. We consider the case
of a system translationally invariant in the y direction, with
a perturbation of the epithelium-stroma interface of the
form �hðx;tÞ¼�h0 expð!tþ iqxÞ. In the linearized system
of equations, the solutions for the perturbations all take this
form. Equation (1) then reads

�@�@��v� þ �@�@��v� � @��pe ¼ 0; (5)

together with the continuity equation @��v� ¼
kpðz� �hÞ � kpðzÞ ¼ � @kp

@z �h. The bulk equations for

the stroma keep their previous forms.
Stress balance at the apical surface of the epithelium

reads

�ð@x�vz þ @z�vxÞ þ i2�ð@zv0
zÞq�H ¼ 0; (6)

2�@z�vz � �pe þ �aq
2�H ¼ 0: (7)

The perturbation �H of the apical surface is determined by
the boundary condition vzjHþLþ�H ¼ !�H, which takes
the form ½k expð�H=lÞ � k0��H þ �vz ¼ !�H to linear
order. Stress balance at the epithelium-stroma interface
reads

2�@z�vz � �pe ¼ 2�@z�uz � �ps þ �iq
2�h;

�ð�vx �!�uxÞ ¼ �ð@x�vz þ @z�vxÞ þ 2i�ð@zv0
zÞq�h

¼ �ð@x�uz þ @z�uxÞ: (8)

Also at this interface, continuity of velocity and displace-
ment yields ðk� k0Þ�hþ �vz ¼ !�h and �uz ¼ �h.
Finally, the displacement vanishes at the bottom of the
stroma: �u�jz¼0 ¼ 0. The growth rate ! is obtained by
imposing the existence of a nontrivial solution to this set of
linear equations. From this condition, we obtain three
relaxation modes for the system (Fig. 2).
In the case where the stroma is treated as a viscous fluid,

the previous equations need to be modified by replacing the
displacement u� by a velocity (vs

�) and the shear modulus
� by a viscosity (�s). In addition, the following boundary
conditions are altered: The friction term in Eq. (8) and the
condition �uz ¼ �h at the epithelium-stroma interface are
replaced by �ð�vx � �vs

xÞ and �vs
z ¼ !�h, respectively.

This results into two relaxation modes (Fig. 3).
The number of modes that we get can be understood as

follows. For the elastic stroma, the set of boundary
conditions generates three modes because it contains the
inverse relaxation rate ! three times: in the velocity-
continuity conditions at both interfaces and in the tangen-
tial stress-balance equation at the epithelium-stroma
interface. In the case of a fluid stroma, we lose the mode
associated with the latter equality.
It is instructive to look at the analytic expansions of

these different modes in the limit of large wave numbers q.
In this regime, the modes associated with, respectively, the
epithelium-stroma interface and the apical surface de-
couple, since their characteristic decay lengths are of order
q�1, which is much smaller than H. For an elastic stroma,
their expansions to constant order read

!el
1 ’ � �i

2�
q��

�
þ k� k0;

!el
2 ’ � �a

2�
qþ ke�H=l � k0;

!el
3 ’ �2

�

�
q��

�
: (9)

Among these expressions, only the one related to !el
1

can be positive, indicative of an unstable mode. It results
at the epithelium-stroma interface from a balance of
the stabilizing surface tension and stroma resistance to
deformations, on the one hand, and the overall positive
cell production, on the other hand. This expression gives a
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necessary condition for the existence of an unstable regime
[�ðk� k0Þ * �]. The condition !el

1 ¼ 0 also yields a
leading-order expression for the upper crossover wave
number from the unstable to the stable regime, provided
that this crossover occurs in the large-q domain. The ex-
pression for !el

2 results from a balance of surface tension
and cell production at the apical surface, and the one for
!el

3 from a balance of tangential stress and surface friction

at the epithelium-stroma interface. Both expressions cor-
respond to modes that are always stable in their region of
validity.

In the case of a viscous stroma, the potentially unstable
mode reads

!v
1 ’ � �i

2ð�þ �sÞqþ �

�þ �s

ðk� k0Þ: (10)

The second mode has an identical expansion to that of the
elastic case, and the third mode is lost.
Similar expansions can be obtained in the small-q re-

gime, but the expressions to next-to-leading order are
complicated and mix the different physical origins de-
scribed above. In the case of an elastic stroma, two of the
three relaxation rates diverge to minus infinity, indicative
of the elastic resistance of the stroma to a uniform com-
pression. To leading order, they read

~!el
1 ’ � �

4�

1

HLq2
; (11)

~!el
2 ’ � 36�

�

1

H3L3q6
: (12)

The third mode, however, has a finite small-q limit, which
reads k expð�H=lÞ � k0. We can retrieve this expression
by integrating the continuity equation at q ¼ 0 over the
height of the perturbed epithelium and to leading order in
the perturbations. In the case of a fluid stroma, one of the
modes has the same finite limit, which is consistent with
the argument presented above. However, the other relaxa-
tion rate approaches zero as q4 rather than infinity:

~!v
1 ’ �L2½3H�a þ 2Lð�a þ �iÞ�

6�s

q4: (13)

Therefore, as the system is also always stable at suffi-
ciently small q, the relaxation time diverges in this case.
This is because the relaxation here is associated with
lubricationlike viscous flows over large distances in the
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FIG. 3 (color online). Similar plots as those presented in Fig. 2
and with the same conventions but in the case of a viscous
stroma. The same default parameters are used, except for �s ¼
10 kPa � s (instead of �), �i ¼ 1 mN �m�1, and k ¼ 0:9 d�1.
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FIG. 2 (color online). Relaxation modes ! as a function of the
wave number q for an elastic stroma. (a) The three relaxation
modes are plotted for the following parameters: � ¼ 10 MPa � s,
� ¼ 100 Pa, �i ¼ 10 mN �m�1, �a ¼ 1 mN �m�1 (all esti-
mated from Ref. [17]), k ¼ 8:6 d�1 (see, e.g., [16]), � ¼
1010 Pa � s �m�1 (estimated from Ref. [18]), H ¼ L ¼
300 �m, and l ¼ 200 �m (estimated from Ref. [1]).
(b)–(h) In each panel, the most unstable mode is investigated
while one parameter is varied as compared with (a). The varied
parameter is indicated at the top of each panel, and its different
values directly on each graph. Plots are coded both in color as
well as line styles.
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x direction rather than elastic relaxation over short dis-
tances in the z direction.

These results show that the instability always occurs at a
finite wave vector. In Figs. 2 and 3, we analyze the behavior
of the most unstable mode as a function of the parameters.
We see that the interface is destabilized when either the
epithelium viscosity�, the cell-division rate k, or the thick-
ness of the dividing region l is increased, because of a higher
resulting shear stress [15]. This is also true for the thickness
L of the stroma in the elastic case, since a thicker stroma
resists less to a given deformation. Increasing the other
parameters has a stabilizing effect. This is intuitive for the
elastic shear modulus of the stroma� in the elastic case and
the stroma viscosity�s in the viscous case, as well as for the
surface tension �i in both cases. The parameter �a in both
cases aswell asL in the fluid case have little influence on the
dispersion curves (not shown for the fluid case).

For a viscoelastic material with relaxation time 	, we do
not expect anything qualitatively different from the fluid or
elastic cases to occur at large and intermediate wave vec-
tors. In the small-q regime, as the relaxation rate goes
toward a finite negative value in the case of an elastic
stroma, it vanishes when the latter is fluid. Getting the
correct behavior in the generic viscoelastic case would
require a complete study. As a general fact, we expect
the curves presented in Fig. 2 (respectively, Fig. 3) to be
valid when !	 � 1 (respectively, !	 � 1).

In this work, we have shown the existence of a hydro-
dynamic instability of an interface between a viscous fluid
with production terms and a viscoelastic material. The
instability stems from the generation of viscous shear stress
in the fluid due to material production. As such, this
mechanism constitutes a new hydrodynamic instability
that has not yet been described. We propose that this effect
provides a potential mechanism for the undulations at
epithelium-stroma interfaces in vivo. Our analysis might
explain why such undulations are more pronounced in
neoplastic tissues [1]. Indeed, tumorous epithelial cells
divide faster than healthy cells and in a larger domain
away from the basement membrane [16]. The large-
deformation regime of the instability might correspond to
such fingering phenomena. It is commonly accepted that
cancerous invasion requires the production of proteases
that can degrade the basement membrane and remodel
the extracellular matrix [16]. Such a digestion could de-
crease the interfacial tension between the tissues as well as
the elastic modulus of the stroma, thereby triggering the
present instability. The digestion of the extracellular matrix
is thus not an alternative to the mechanism proposed here
but one of its determinants. While proteases enhance the
instability and allow the growth of protrusions to proceed
deeper into the stroma, we expect the physical forces
driving this process to originate from the mechanism pre-
sented here.

The undulation instability investigated in this work is
potentially relevant for many biological systems in which
interfaces of growing cell populations are present. For
example, at interfaces between many tumors and healthy
tissues, similar effects are observed [1]. More generally, we
expect this type of instability to occur in all sufficiently
viscous fluids with source terms. It would therefore be
interesting to conceive other systems that show the same
type of instability while being easier to characterize ex-
perimentally than living tissues.
We thank A. Callan-Jones, M. Lenz, and X. Sastre-
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