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We study an electron interferometer formed with a quantum point contact and a scanning probe tip in a

two-dimensional electron gas. The images giving the conductance as a function of the tip position exhibit

fringes spaced by half the Fermi wavelength. For a contact opened at the edges of a quantized conductance

plateau, the fringes are enhanced as the temperature T increases and can persist beyond the thermal length

lT . This unusual effect is explained by assuming a simplified model: The fringes are mainly given by a

contribution which vanishes when T ! 0 and has a decay characterized by a T-independent scale.
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In mesoscopic physics, the interference effects are usu-
ally important when the temperature T ¼ 0, and disappear
as T increases, at scales larger than the thermal length
lT / 1=T. We show in this Letter that there are interfer-
ometers exhibiting the opposite behavior, where interfer-
ence fringes are larger when T � 0 and persist beyond lT .
For instance, let us take an electron interferometer made of
two scatterers, one of them having a sharp resonance such
that it is transparent at the Fermi energy EF and scatters
only the electrons of energy E � EF. In that case, Fermi-
Dirac statistics give rise to a temperature-induced interfer-
ometer which disappears as T ! 0. Such an interferometer
exhibits temperature-induced fringes (TIFs). A magnetic
impurity or a quantum dot exhibiting a Kondo resonance at
EF could provide such a resonant scatterer. We consider
here a simpler scatterer without many-body effects, the
resonance level model (RLM), where a tunable level is
put in a contact between two leads, giving rise to a resonant
peak in the contact transmission. With all the current
flowing through the contact, this geometry enhances the
effect of the resonance and favors large TIFs. The tem-
perature dependence of the TIFs resulting from the inter-
ferences between the resonant level and another scatterer
put in the leads can be analytically given from this exactly
solvable model.

Moreover, we show that TIFs characterize also electron
interferometers made of a quantum point contact (QPC)
and the depletion region created by the charged tip of a
scanning gate microscope (SGM). Though the QPC has no
true resonances, the sharp opening of its conductance
channels can also give rise to TIFs, for special values of
the QPC opening. This is particularly interesting, since the
QPCs are used in a wide variety of investigations, includ-
ing various prototypes of quantum-computing schemes. By
using a two-dimensional electron gas created just beneath
the surface of a semiconductor heterostructure, the QPC
can be induced by electrostatic gates. The quantization
[1,2] in units of 2e2=h of its conductance g can be ex-
plained by using simple noninteracting models [3–5], out-
side some anomalies, such as the 0:7ð2e2=hÞ anomaly [6],

which cannot be explained by a noninteracting theory. The
recent engineering [7–10] of the SGM has allowed several
experimental groups to ‘‘image’’ the electron flow associ-
ated with the successive conductance plateaus [7,9] of a
QPC. The images are obtained with the charged tip of an
atomic force microscope which can be scanned over the
surface of the heterostructure. A negatively charged tip
causes a depletion region in the two-dimensional electron
gas underneath the tip which scatters the electrons at a
distance r from the QPC. The tip and the QPC form an
electron interferometer, and the SGM images give its con-
ductance g as a function of the tip position. Fringes falling
off with r and spaced by half the Fermi wavelength �F=2
characterize these images. As recently pointed [11] out, the
effect of a charged tip upon g is more important if the QPC
is biased between the conductance plateaus than inside the
plateaus.
We show that temperature can give rise to TIFs if the

QPC is biased near the ends of a plateau. Moreover, the
scale characterizing the TIF decay is not lT but another
length l� associated with the sharpness of the conductance
steps. Fringes persisting above lT have been seen [8] in the
middle of the plateaus, and the role of impurity scattering
was important for explaining this persisting fringing
[12,13]. Here, we give another mechanism for fringes
persisting beyond lT , valid without impurity scattering. It
takes place only at the edges of the plateaus, and its
observation requires a sharp opening of the QPC conduc-
tion channels.
Numerical observations from QPC models.—Our obser-

vations are based on numerical simulations of ballistic
models where the only source of scattering outside the
QPC comes from the depletion region caused by the
charged tip. This limit was experimentally studied in
Refs. [12,14]. We neglect electron-electron interactions
acting inside the QPC, though they can change the SGM
images of a weakly opened contact [15]. Therefore, our
results exhibit neither the branches [8] nor the 0:7ð2e2=hÞ
anomaly seen in the experiments. By using lattice models
with small filling factors for describing a broad infinite
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strip in the continuum limit, a long adiabatic QPC
characterized by a sharp opening of its conduction chan-
nels [3] is defined in a central scattering region. Model 1
consists in a smooth saddle-point contact [4], whilemodel 2
has hard walls (see Fig. 1 and its caption). The effect of the
charged tip is modeled by a potential V � 0 at a site of
coordinates ðx ¼ X � LX; y ¼ LYÞ.

Typical SGM images are shown in Fig. 2 using a QPC
biased at the edge of the first two conductance plateaus. At
T ¼ 0, the conductance without the tip g0 is an integer [see
the insets which give g0ðEÞ, the arrows indicating the
value of EF], and the interference effects are weak
[Figs. 2(a) and 2(c)]. Increasing T induces TIFs, as shown
in Figs. 2(b) and 2(d). When g0 ¼ 1 the TIFs are in the
longitudinal X direction, while they have a V shape when
g0 ¼ 2. These patterns have been observed [7] in the
middle of the plateaus. A checkerboard pattern of the
type discussed in Ref. [12] can be seen in Fig. 2(b). Last
but not least, in Fig. 2(d), TIFs can be seen up to r � 4lT
(the thermal length lT � 4�F=2); thus, we have persistent
fringing beyond lT , a phenomenon observed and explained
when there are other scatterers near the tip (see [8,12,13]),
which is not the case here.

Though this occurrence of fringes with temperature
looks extraordinary, it can be simply explained. For a
QPC of reflection and transmission amplitudes xqpc and

tqpc, let us consider the paths sketched in Fig. 1(a) which

contribute to the total reflection R: the path A (QPC reflec-
tion) and the path B (tip reflection), of respective ampli-
tudes a / xqpc and b / t2qpcðV=xÞ expð2ikFxÞ. On the first

plateau, xqpc ¼ 0 at EF and the effect of the tip falls off as

jbj2 / ðV=xÞ2 at T ¼ 0. The fringes come from the inter-
ferences of path B with longer paths C, giving a checker-
board pattern [12]. When T � 0, the electron beam
contributing to transport acquires a width kBT. If EF is
located at the edge of the first plateau at T ¼ 0 [arrow in
Fig. 2(a)], electrons of energies below EF for which
xqpc � 0 begin to contribute to g, and interferences be-

tween paths A and B give a contribution� jaþ bj2 / V=x
of period �F=2 to R. This explains the TIFs observed
when T � 0.
Analytical solution of a RLM.—For quantitatively de-

scribing the TIFs, we study the interferometer sketched in
Fig. 1(b): two leads contacted via a single site 0 of energy
V0 and coordinates ð0; 0Þ with hopping terms tc. The effect
of the tip is modeled by a potential V � 0 at the site ðx; 0Þ
in the right lead. While for a QPC the conductance without
tip g0ðEÞ is a steplike function and g0 ¼ 1 inside the first
plateau, for the RLM model it is a Lorentzian with
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FIG. 1 (color online). Electron interferometer made of a QPC
and a scatterer (red point on the right) induced by a charged tip.
The lines with two arrowheads give the main interference paths
responsible for the SGM fringes. (a) Saddle-point QPC potential
used in model 1: U1ðX; YÞ ¼ ðY=LYÞ2½1� 3ðX=LXÞ2 þ
2jX=LXj3�1=4 for jXj � LX and U1 ¼ 0 elsewhere. LY ¼ 10
and LX ¼ 120 (i.e., long QPC). Model 2 (hard wall QPC not
shown) consists in removing for jXj � LX the sites of coordi-
nates jYj � LY þ 3ðX=LXÞ2, with LY ¼ 6 and LX ¼ 20 but
keeping otherwise the site potentials equal to zero. The hopping
amplitudes are th ¼ �1. (b) RLM: 2 semi-infinite square lattices
(with zero on-site potential and hopping amplitudes th¼�1) are
contacted by hopping terms tc via a single site 0 of energy V0. At
a distance x from the contact, there is a tip potential V�0.

FIG. 2 (color online). �gðTÞ ¼ gðTÞ � g0ðTÞ as a function of
the tip position (in units of �F=2). The left figures correspond to
T ¼ 0, while T � 0 for the right figures. g0 is biased as indicated
by the arrow in the insets [giving g0ðT ¼ 0Þ as a function of EF].
(a),(b): QPC opened at the beginning of the first plateau using
model 1 with V ¼ 1 and �F=2 ¼ 9:65. kBT=EF ¼ 0:01 for (b)
(2lT=�F � 14:6). (c),(d): QPC opened at the beginning of the
second plateau using model 2 with V ¼ �2 and �F=2 ¼ 6:7.
kBT=EF ¼ 0:035 for (c) (2lT=�F � 4).
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g0 ¼ 1 only at resonance. Nevertheless, we expect that the
fast energy dependence of g0 in the RLM model can be
used for describing the sharp opening of the first QPC
conduction channel. Let us first study the limit T ¼ 0.
Without the tip, g0ðEÞ [in units of 2ðe2=hÞ] can be ex-
pressed [16] in terms of the self-energies �l;rðEÞ ¼
Rl;rðEÞ þ iIl;rðEÞ of the left l and right r leads:

g0ðEÞ ¼ 4IlIr
ðE� V0 � Rl � RrÞ2 þ ðIr þ IlÞ2

: (1)

�l;rðEÞ are related to the retarded Green’s functions of the 2
leads evaluated at the 2 sites directly coupled to 0:
�l;rðEÞ ¼ t2ch�1; 0jGR

l;rðEÞj � 1; 0i. If tc is small, the trans-

mission exhibits a sharp Breit-Wigner resonance of width
� ¼ �ðIl þ IrÞ at an energy V0 þ Rl þ Rr. The Green’s
function of semi-infinite square lattices can be obtained
from the expression valid for an infinite square lattice using
the method of mirror images [17].

In the presence of the tip, the conductance gðEÞ of the
QPC-tip interferometer is still given by Eq. (1), if one adds
to the self-energy �rðEÞ of the right lead an amount
��rðEÞ which accounts for the effect of the tip. This
generalization of formula (1) uses a method introduced
in Ref. [18] and will be given in a following paper
[19]. From Dyson’s equation, one gets ��rðEÞ ¼
t2c� expði�Þjh1; 0jGR

r jx; 0ij2, where � and � are, respec-
tively, the modulus and the argument of the scattering
amplitude V=ð1� Vhx; 0jGR

r jx; 0iÞ. Neglecting the x de-
pendences of � and � at large distance, one gets in the
continuum limit

��rðEÞ
t2c

���kexp½ið2kxþ�=2þ�Þ�
2�x

þO

�
1

x3=2

�
: (2)

Since ��rðEÞ ! 0 as x increases, the effect �g ¼ g� g0
of the tip upon g0 can be expanded in powers of the
reduced variables �R ¼ �R=I and �I ¼ �I=I (with
I ¼ Ir;l � �t2ck

2=4 and ��r ¼ �Rþ i�I). The coeffi-

cients depend on g0 and on S0 ¼ g0ð1� g0Þ:

�g ¼ sg0
ffiffiffiffiffi
S0

p
�Rþ S0�I þ sg0

ffiffiffiffiffi
S0

p ð1� 2g0Þ�R�I
þ g20ð34 � g0Þ�R2 þ g20ð�5

4 þ g0Þ�I2; (3)

where s ¼ sgn½ðE� V0 � 2RÞ=2I�.
Out of resonance (g0 < 1), the linear terms give fringes

of period �F=2 falling off as 1=x:

�g

g0
�

g0<1

2� sin�0 cosð2kFxþ �Þ
�kFx

þO

�
1

x3=2

�
; (4)

where � � �=2þ�� �0 with sin�0 � s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g0

p
. At

resonance (g0 ¼ 1), the linear terms vanish and the qua-
dratic terms give a nonoscillatory negative correction
which falls off as 1=x2 accompanied by fringes �gosc
with period �F=2 and 1=x5=2 decay:

�g

g0
�

g0¼1
�
�

�

�kFx

�
2 � �gosc: (5)

These two behaviors of �g characterizing the RLM model
(at or out of resonance) have the same origin than those
obtained in Ref. [11] for a QPC (inside or outside a
plateau).
Let us study the TIFs occurring in the RLMmodel when

EF is located on the transmission peak (g0 ¼ 1 when
T ¼ 0). The quantum statistics give an energy scale �
kBT. The resonant contact gives another energy scale, since
it restricts the transmission inside an energy window �
around EF. This gives two length scales (over which an
electron propagates at the Fermi velocity during the associ-

ated time scales) the thermal length lT ¼ kF=ð4kBT��1=2Þ
yielded by the quantum statistics and the length l� ¼ kF=�
yielded by the resonance. The temperature dependence of
the TIFs is a function of these two scales. The effect of the
tip �gðTÞ at a temperature T is given by

R
�gðEÞ�

½�@fTðEÞ=@E�dE, where �gðEÞ is given by Eq. (3) and
fTðEÞ is the Fermi distribution at an energy E (one has

�4kBT@fTðEÞ=@E � exp�½ðE� EFÞ=ð4kBT��1=2Þ�2). If
EF is at resonance, �gðxÞ shows only weak oscillations at
T ¼ 0 [Eq. (5)]. When T � 0, S0ðEÞ � 0 for electrons of
energies E around EF, yielding TIFs via their linear �=x
contributions in the expansion (3). Doing standard approx-
imations (see Ref. [20]), we get for these TIFs

�gðTÞ
g0ðTÞ

� A

�
x

l�
;
lT
l�

�
� cosð2kFxþ�Þ

2�kFx
� �2

ð�kFxÞ2
: (6)

The amplitude A [shown in Fig. 3(b)] is given by

Að�; 	Þ ¼ ð1þ 2�þ 4	2ÞFþ þ F� �G

erfcð	Þ ; (7)

where F� ¼ e��erfc½2	2��
2	 � and G ¼ ð4	= ffiffiffiffi

�
p Þ�

e�	2�ð�2=4	2Þ. Three main results can be seen: (i) A van-
ishes when T ! 0, i.e., when lT 	 l�. In the opposite
regime, lT 
 l�, (ii) when x 	 lT , there is a universal
asymptotic expð�x=l�Þ decay characterized by the
T-independent scale l� and not by lT; (iii) A has a maxi-
mum when x � lT . In Fig. 3(a), one can check that the
analytical behaviors [Eq. (6)] reproduce the results of
numerical simulations. So far, we have described the
TIFs at resonance. Studying the fringes outside the reso-
nance [g0ðEFÞ � 1], it can be shown [19] that their ampli-
tude A remains a function of x=l� and lT=l�. Since A
becomes negligible as T ! 0 only when g0 � 1 [see
Eq. (4)], one finds that the thermal enhancement of the
fringes persists only in an energy window � 0:2� around
the resonance.
These results obtained with the RLM model can be

extended to a QPC with g0 � 1. We have checked [19]
that the expansion (3) describes also (up to a phase factor)
the effect of a tip upon a QPC when g0 � 1, if one uses in
Eq. (3) the steplike function g0ðEÞ of the QPC instead of
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the Lorentzian g0ðEÞ of the RLM model. Since the linear
terms in Eq. (3) depend on g0ðEÞ through the combination
S0ðEÞ ¼ g0ðEÞ½1� g0ðEÞ�, the scale � for a QPC is given
by the energy window where S0ðEÞ � 0, i.e., by the change
of Fermi energy required to open a new QPC channel at
T ¼ 0. As for the RLM model, � gives also the energy
window (location of the arrows in the insets in Fig. 2) for
observing TIFs at the edges of the plateaus.

In summary, temperature-induced fringes can be ob-
served in the SGM images of a QPC biased near the ends
of conductance plateaus. These fringes vanish when
T ! 0, depend on the ratio lT=l�, and decay with a
T-independent length l�. The sharper the contact opening,
the smaller the energy �, and the larger the length l� where
these fringes can be observed beyond lT . We predict that
very visible TIFs should be observed in a small energy
window of order � for EF in long adiabatic contacts opened
at the edges of the T ¼ 0 conductance plateaus.
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FIG. 3 (color online). (a) RLM conductance gðTÞ as a function
of 2x=�F for increasing temperatures (from top to bottom). The
color points are results obtained by direct numerical simulations,
taking from top to bottom 2lT=�F ¼ 1, 8.8, 4.4, and 2.2.
The solid lines give the analytical results [Eq. (6)]. tc ¼ 0:4,
V ¼ �2, �F=2 � 10, and 2l�=�F � 4. (b) As a function of x=l�,
rescaled amplitude A ¼ Aðx=l�; lT=l�ÞerfcðlT=l�Þ for fixed l�
and increasing temperatures, i.e., ratios lT=l� ¼ 1 (light blue),
0.7 (blue), 0.5 (violet), and 0.3 (red) (solid lines from bottom to
top). The dashed and dotted lines give, respectively, the asymp-
totic behavior 2 expð�x=l�Þ valid for x 	 lT and the function
AðlT=l�; lT=l�Þ, where A is maximum. Inset: Maximum Amax

of the bare amplitude A as a function of lT=l�.
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