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Chirally stacked N-layer graphene systems with N � 2 exhibit a variety of distinct broken symmetry

states in which charge density contributions from different spins and valleys are spontaneously transferred

between layers. We explain how these states are distinguished by their charge, spin, and valley Hall

conductivities, by their orbital magnetizations, and by their edge state properties. We argue that valley

Hall states have [N=2] edge channels per spin valley.
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Introduction.—In the early 1980s, following the discov-
ery of the quantum Hall effect [1], it was recognized [2]
that electronic states can be characterized by topological
indices, in particular, by the integer-valued Chern number
indices that distinguish quantum Hall states. Quantum Hall
states have nonzero Chern numbers and can occur only if
time-reversal symmetry is broken; until recently, they have
been observed only when time-reversal symmetry is ex-
plicitly broken by an external magnetic field. In this Letter,
we discuss a class of broken symmetry states, first pro-
posed theoretically [3–5] and recently discovered experi-
mentally [6,7], which appear in chirally stacked graphene
systems and are characterized by spin- and valley-
dependent spontaneous layer polarization. The aim of the
present Letter is to explain how these states are distin-
guished by their charge [8–10], spin [11], and valley [12]
quantized Hall conductances, by their orbital magnetiza-
tions, and by their edge state properties.

Success in isolating monolayer and few-layer sheets
from bulk graphite, combined with progress in the epitaxial
growth of few-layer samples, has opened up a rich new
topic [13] in two-dimensional electron physics. Electron-
electron interaction effects are most interesting in
ABC-stacked N � 2 layer systems [14–16], partly because
[3,4,17–20] their conduction and valence bands are very
flat near the neutral system Fermi level. For this special
stacking order, low-energy electrons are concentrated on
the top and bottom layers, and the low-energy physics of a
N-layer system is described approximately by a two-band
model with �pN dispersion and large associated
momentum-space Berry curvatures [21]. When these
band states are described in a pseudospin language, the
broken symmetry state is characterized [3] by a
momentum-space vortex with vorticity N and a vortex
core which is polarized in the top or bottom layers. For
AB-stacked bilayers, for example, interactions lead to a
broken symmetry ground state [3,4,19] with a spontaneous
gap in which charge is transferred between the top and
bottom layers. ABC-stacked trilayer graphene has even
flatter bands and is expected to be even more unstable to

interaction-driven broken symmetries [16], but samples
that are clean enough to reveal its interaction physics
have not yet been studied.
Hall conductivities and magnetizations.—We discuss

the electronic properties of N-layer ABC-stacked systems
by using the ordered state quasiparticle Hamiltonians sug-
gested by mean-field calculations [3,19] and renormaliza-
tion group analysis [4]:

H N ¼ ðv0pÞN
ð��1ÞN�1

½cosðN�pÞ�x þ sinðN�pÞ�y� þ ��z:

(1)

We have used the notation cos�p ¼ �zpx=p and sin�p ¼
py=p, where �z ¼ �1 labels valleys K and K0, the two

inequivalent Brillouin zone corners. The Pauli matrices �
act on a which-layer pseudospin degree of freedom,
and sz ¼ �1 denotes the two spin flavors. In
Eq. (1) the first term [14,16] is the low-energy k � p band
Hamiltonian for a single valley. Weak remote hopping
processes have been dropped with the view that they do
not play an essential role in the broken symmetry states [4].
The second term is an interaction-induced gap [3,4,19,20]
term which defines the direction of layer polarization in the
momentum-space vortex core. Since the pseudospin chi-
rality frustrates off-diagonal symmetry breaking [3], we
consider only the pertinent types of diagonal symmetry
breaking. For each spin and valley, symmetry is broken by
choosing a sign for �. We have dropped the momentum
dependence of � because, as wewill see, it does not play an
essential role below. 2j�j is the size of the spontaneous gap,
v0 is the Fermi velocity in graphene, and �1 � 0:4 eV is
the interlayer hopping energy. The pN dispersion is a
consequence of the N-step process in which electrons
hop between low-energy sites in top and bottom layers
via high-energy states.
When spin and valley degrees of freedom are taken into

account, the system has 16 distinct broken symmetry states
in which the sign of � is chosen separately for (K " ),
(K # ), (K0 " ), and (K0 # ) flavors. We take the view that
any of these states could be stable, depending on details
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that are beyond current knowledge and might be tunable
experimentally. The 16 states can be classified according to
their total layer polarization, which is proportional to the
sum over the spin valley of the sign of �. Six of the 16
states have no net layer charge transfer between the top and
bottom layers and are likely to be lowest in energy in the
absence of an external electric field. These six states can be
separated into three doublets which differ only by layer
inversion in every spin valley. Thus three essentially dis-
tinct states compete for the broken symmetry ground state:
the anomalous Hall state in which the sign of � is valley-
dependent but not spin-dependent (��z ! ��z�z), the
layer-antiferromagnetic state in which � is only spin-
dependent (��z ! �sz�z), and the topological insulator
(TI) state in which � is both spin- and valley-dependent
(��z ! ��zsz�z). These states are distinguished by their
spin- and valley-dependent Hall conductivities and orbital
magnetizations indicated schematically in Fig. 1 and sum-
marized in Table I.

Berry curvatures.—The three broken symmetry states on
which we focus are distinguished by the signs of the Berry
curvatures [21] contributions from near the K and K0
valleys of " and # spin bands; we note that the Berry
curvatures are nonzero only when inversion symmetry is

spontaneously broken. Using the Berry curvatures, we
evaluate the orbital magnetizations and Hall conductivities
of all three states. For momentum-independent mass �, the
Berry curvature of the N-layer chiral model is

�ð�Þ
ẑ ðp; �z; szÞ ¼ ��

�z
2

�

h3t

�
@hk
@p

�
2
; (2)

where the symbol � ¼ þð�Þ denotes the conduction
(valence) band and the transverse and total pseudospin

fields are hk ¼ ðv0pÞN=�N�1
1 and ht ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ h2k

q
. The

orbital magnetic moment carried by a Bloch electron

[21] is mð�Þ
ẑ ¼ e@"ð�Þ�ð�Þ

ẑ for a two-band model with

particle-hole symmetry. For the chiral band model

mð�Þ
ẑ ðp; �z; szÞ ¼

�
��z

�

h2t

�
@hk
@p

�
2
me

�
�B; (3)

where me is the electron mass and �B is the Bohr magne-
ton e@=2me. Like the Berry curvature, the orbital magne-
tization changes sign when the valley label changes and
when the sign of the mass term (the sense of layer polar-
ization) changes; i.e., both are proportional to �zsgnð�Þ.
The orbital magnetization is, however, independent of
the band index �. As illustrated in Fig. 2, in the case of
j�j ¼ 10 meV, the orbital magnetic moment close to each
Dirac point has a symmetric sharp peak at which individual
states carry moments 20 times larger than �B. The state in
which � ! ��z therefore has overall orbital magnetization
and broken time-reversal symmetry, even though it does
not have a finite spin polarization. Integrating over the
valence band, we obtain a total orbital magnetization per
area �ðN�me=2�@

2Þ lnð�1=j�jÞ�B, that is, �0:002�B

per carbon atom for j�j ¼ 10 meV.
In the presence of an in-plane electric field, an electron

acquires an anomalous transverse velocity proportional to
the Berry curvature, giving rise to an intrinsic Hall
conductivity [9,21]. Using Eq. (3), we find that the intrinsic
Hall conductivity contribution from a given valley and
spin is

�ð�Þ
H ð�z; szÞ ¼ �z

2

Ne2

h

�
�

htðpFÞ �
�

j�j	�;þ
�
; (4)

T

B

K
K’

K K’ T
B

KK’

T

B

K

K’

K

K’

K

K’

T
B

K

K’

T

B

K

K’

K

K

K’

T
B

K

K’

T

B

K

K’

K

K’

T
B

K’

K

K’

)b()a(

(c) (d)

FIG. 1 (color online). For cases (a)–(d) the lower panel de-
scribes the sense of layer polarization for each spin-valley
combination, while the upper panel schematically indicates the
corresponding Hall conductivity contributions. (a) A valley Hall
(QVH) insulator with a net layer polarization and a charge-
density wave mass ��z; (b) an anomalous Hall (QAH) insulator
with a valley-dependent mass ��z�z; (c) a layer-
antiferromagnetic (LAF) insulator with a spin-dependent mass
�sz�z; (d) a quantum spin Hall (QSH) insulator (or a 2D TI)
with a valley- and spin-dependent mass term ��zsz�z.

TABLE I. Summary of spin-valley layer polarizations (T or B)
and corresponding charge, spin, and valley Hall conductivities
(e2=h units) and insulator types for the three distinct states
(b)–(d) with no overall layer polarization on which we focus,
for a state in which every spin valley is polarized toward the top
layer (a) and for a state with partial layer polarization.

Fig. K " K # K0 " K0 # �ðSHÞ �ðVHÞ �ðCHÞ �ðSVHÞ Insulator

1(b) T T B B 0 0 2N 0 QAH

1(c) T B T B 0 0 0 2N LAF

1(d) T B B T 2N 0 0 0 QSH

1(a) T T T T 0 2N 0 0 QVH

T T T B N N N N All
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where htðpFÞ is the total pseudospin field at the Fermi
wave vector. Provided that the Fermi level lies in the
mass gap, each spin and valley contributes Ne2=2h to the
Hall conductivity, with the sign given by �zsgnð�Þ.

In Fig. 1(a), we consider the case in which each spin
valley is polarized in the same sense. The total Hall con-
ductivity is then zero for both spins, with the K and K0
valleys making Hall conductivity and magnetization con-
tributions of opposite sign, preserving time-reversal sym-
metry. This phase can be viewed as having a valley Hall
effect [12], and, even though it does not break time-
reversal symmetry, we argue later that this designation
has physical significance.

As shown in Fig. 1(b), the case ��z ! ��z�z implies
Hall conductivity and orbital magnetization contributions
of the same sign for each spin and valley. This state breaks
time-reversal symmetry, but its spin density is surprisingly
everywhere zero. The total Hall conductivity has the quan-
tized value 2Ne2=h. Similarly, the orbital magnetic mo-
ment has the same sign for all flavors. We refer to this state
as the quantized anomalous Hall state. In addition to its
anomalous Hall effect, this state has a substantial orbital
magnetization. The anomalous Hall states is probably
most simply identified experimentally by observing a

 ¼ 2N quantum Hall effect which persists to zero mag-
netic field.

For ��z ! �sz�z, depicted in Fig. 1(c), the two spins
have valley Hall effects of opposite sign, and the two layers
have spin polarizations of opposite sign. This layer-
antiferromagnetic state has broken time-reversal symmetry
and opposite spin polarizations on the top and bottom
layers.

Figure 1(d) describes the third type of state with effec-
tive interaction ��z ! ��zsz�z. This state does not break
time-reversal invariance and instead has anomalous Hall
effects of opposite signs in the two spin subspaces, i.e., a
spin Hall effect. Neither the top nor the bottom layer has
spin or valley polarization. Quite interestingly, if we con-
sider only one layer, there are both spin Hall and valley
Hall effects; however, the orientations of the Hall currents
in the top and the bottom layers are the same for the spin
Hall effects but opposite for the valley Hall effects.

Table I includes as well the case in which one flavor
polarizes in the opposite sense of the other three; charge,
valley, and spin Hall effects coexist in this state, which can
be favored by a small potential difference between the
layers [20].
Edge states.—The physical significance of spontaneous

charge, valley, and spin anomalous Hall effects is illus-
trated in Fig. 3. Graphene has very weak spin-orbit inter-
actions, which in our case we ignore altogether. Figure 3
compares the edge electronic structure of N ¼ 1; 2; 3 spin-
less models with a quantized anomalous Hall effect
(i.e., with opposite layer polarizations at two valleys) and
with a quantized valley Hall effect. The states with anoma-
lous Hall effects have N topologically protected robust
chiral edge states associated with the quantum Hall effect,
as shown in Figs. 3(d)–3(f). The edge state structure asso-
ciated with the valley Hall states is more interesting. In the
N ¼ 1 valley Hall state, the Hall conductivity contribution
associated with each valley is 1=2 in e2=h units; the full
unit of Hall conductance requires the two valleys to act in
concert. Because they act in opposition in the valley Hall
state, there is no edge state, as shown in Fig. 3(a). For
N ¼ 2, on the other hand, each valley contributes a full
quantum Hall effect, and as we see in Fig. 3(b), we find two
chiral edge states with opposite chirality, one associated
with each valley. For N ¼ 3, depicted in Fig. 3(c), the
additional half quantum Hall effect from each valley is
insufficient to produce a new chiral edge state branch. In
general, we expect [N=2] chiral edge state branches at each
valley in an N-layer stack. Of course, valley Hall edge
states are topologically protected only when the edge-
direction projections ofK andK0 valleys are not coincident
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FIG. 2 (color online). The magnitude of orbital magnetic mo-
ments carried by individual states versus in-plane momentum,
for each spin and valley flavor in ABC graphene N layers. Here
the moments are in units of �B and j�j ¼ 10 meV.
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FIG. 3 (color online). Intravalley and intervalley edge states in
chirally stacked graphene systems. (a),(d) For a single layer, (b),
(e) for a bilayer, and (c),(f) for a trilayer. To visualize the edge
states, the intralayer and interlayer nearest neighbor hoppings are
chosen as �0 ¼ 1 and �1 ¼ 0:3, respectively; � ¼ 0:25 for
(a)–(c) and � ¼ 0:3
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and intervalley scattering due to disorder is absent.
Nevertheless, we expect robust edge states to be present
in valley Hall states, as found [22] in numerical studies of
valley Hall states induced by an external electric field
without interactions.

Discussion.—At the level of the continuum-model
mean-field theory [3], the three charge balanced states
we have discussed are degenerate. In addition to breaking
inversion symmetry, each breaks two of three additional
symmetries: time reversal (T ), spin-rotational invariance
[SUð2Þ], and the valley Ising symmetry (Z2). The TI state
preserves only T , the anomalous Hall phase preserves
only spin-rotational invariance, and the antiferromagnetic
state has Z2 symmetry. Both TI and antiferromagnetic
phases break the continuous SUð2Þ symmetry, and there-
fore Goldstone modes emerge [10]. The actual ground state
is dependent on subtle correlation and microscopic physics
issues that are beyond the scope of this paper. We note,
however, that it might be possible to induce transitions
between different possible states by using external fields.
For example, the energy of the quantized anomalous Hall
state will be lowered by a perpendicular external magnetic
field because it has a large orbital magnetization. The fully
layer polarized state will be favored by an external electric
field which produces a potential difference between the
layers. Increasing the magnetic field further results in
quantum Hall ferromagnetism [23–25]. Recent experi-
ments [6,7] in bilayers appear to provide definitive proof
that the ground state at very weak external magnetic fields
is the quantized anomalous Hall state.

The quantum spin Hall effect we discuss in this Letter is
in several respects different from that discussed in the well
known papers [5,11] which foreshadowed the identifica-
tion of topological insulators. (i) The quantum spin Hall
effect is driven by broken symmetries produced by
electron-electron interactions, rather than by spin-orbit
interactions [11], which we neglect. The effective spin-
orbit coupling ��zsz�z due to electron-electron interac-
tions can be 104 times larger than the intrinsic one [26].
(ii) Unlike the previous interaction-induced TI phase [5],
which appears only at finite interaction strengths, here the
instability to the TI phase is present even for weak inter-
actions. (iii) The broken symmetry occurs only for N � 2
rather than in the single-layer systems [5,11]. (iv) Our
states are also distinguished topologically, since they are
characterized by Chern numbers which can have any in-
teger value, rather than by a Z2 label. Of course, only
N-odd layers are topologically nontrivial TIs, because the
helical edge modes are likely to localize in an N-even
system due to the backscattering process allowed by T
[27]. When Rashba spin-orbital interactions are strong, the
spin Hall state is likely to be selected as the ground state
and the Hall conductance will no longer be precisely
quantized.

The estimated strength of Rashba spin-orbital interactions
[26,28] in most experimental systems studied to date is
much smaller than the estimated spontaneous gap [20], so
its influence will normally be marginal.
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