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We provide numerical evidence that electronic preturbulent phenomena in graphene could be observed,

under current experimental conditions, through current fluctuations, echoing the detachment of vortices

past localized micron-sized impurities. Vortex generation, due to micron-sized constriction, is also

explored with special focus on the effects of relativistic corrections to the normal Navier-Stokes equations.

These corrections are found to cause a delay in the stability breakout of the fluid as well as a small shift in

the vortex shedding frequency.
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Since its recent discovery [1], graphene has continued to
surprise scientists with an amazing series of spectacular
properties, such as ultrahigh electrical conductivity, ultra-
low viscosity to entropy ratio, combination of exceptional
structural strength and mechanical flexibility, and optical
transparency. Many of these fascinating effects are due to
the fact that, consisting of literally a single carbon mono-
layer, graphene represents the first instance of a truly
two-dimensional material (the ‘‘ultimate flatland’’ [2]).
Moreover, due to the special symmetries of the honeycomb
lattice, electrons in graphene are shown to behave like an
effective Dirac fluid of massless chiral quasiparticles prop-
agating at a Fermi speed of about vF � c=300� 106 m=s.
This configures graphene as a very special, slow-relativistic
electronic fluid, where many unexpected quantum-
electrodynamic phenomena can take place [3]. In particular,
the capability of reaching down viscosity to entropy ratios
smaller than that of superfluid helium at the lambda point
has recently spawned the suggestion that electronic trans-
port in graphene may support preturbulent phenomena [4].

In this Letter, we pursue this suggestion in quantitative
terms. More precisely, we simulate the relativistic
graphene-fluid equations, proposed in Ref. [4], under con-
ditions of present and prospective experimental realizabil-
ity. Our main result is that microscale impurities, as small
as a few microns, are capable of triggering coherent pat-
terns of vorticity in close qualitative and quantitative re-
semblance with classical two-dimensional turbulence (see,
e.g., Fig. 1). It is also shown that such vorticity patterns
give rise to detectable current fluctuations across the sam-
ple, well in excess of flickering noise. Since these current
fluctuations lie in the range of several hundred MHz, their
actual detection may still raise an experimental challenge.
As a result, based on our simulations, we conclude that the
hydrodynamic picture of graphene as a near-perfect, slow-
relativistic fluid, as developed in Ref. [4], should be liable
to experimental verification.

The equations for the Dirac electron fluid in graphene
read as follows [4]: @�c=@tþr � ð�c ~uÞ ¼ 0, for charge
conservation, @�=@tþr � ½ð�þ pÞ ~u� ¼ 0, for energy
density conservation, and
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for momentum conservation. Here, c is the Fermi speed
(� 106 m=s), � the energy density, p the pressure, �c the
charge density, and ~u the velocity. The shear viscosity can
be calculated by using [4]

� ¼ C�

NðkBTÞ2
4@c2�2

; (2)

where C� �Oð1Þ is a numerical coefficient, T is the

temperature, � ¼ e2="@c is the effective fine structure

FIG. 1 (color online). Preturbulence at Re ¼ 25 in graphene is
shown at 379 400 time steps (a) and (b), and at 603 400 time
steps (c) and (d). For (b) and (d) the term @p=@t was removed.
The color represents the magnitude of the velocity.
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constant, e being the electric charge of the electron, " the
relative dielectric constant, and N the number of species of
free massless Dirac particles. Additionally, the entropy
density can be calculated according to the Gibbs-Duhem
relation �þ p ¼ Ts. These equations have been derived
under the assumption j ~uj � c. The relativistic lattice
Boltzmann (RLB), proposed by Mendoza et al. [5], is
hereby adapted to reproduce, in the continuum limit, the
equations for the Dirac electron fluid described above. The
RLB model [5] was defined on a three-dimensional lattice
with 19 discrete velocities. Since graphene is two dimen-
sional, we have adapted the model to a two-dimensional
cell with nine discrete velocities, linking each site to its
four nearest neighbors, four next-to-nearest neighbors (di-
agonal), plus a rest particle. The shear viscosity, according
to this model, is � ¼ ð�þ pÞð�� 1

2Þc2l �t=3c2, where cl ¼
�x=�t is the ratio of the lattice spacing to time-step size
and � is the single relaxation time [5].

We choose the equation of state � ¼ 3p, which depends
on temperature in the relativistic regime, as �� ðkBTÞ3=
ðc@Þ2 ¼ T3 (in normalized units c ¼ @ ¼ kB ¼ e ¼ 1) [6].
Thus, the shear viscosity � would depend on the third
power of the temperature, leading to a different relation
than Eq. (2). However, in the Dirac fluid, the relaxation
time for the electrons depends on the inverse of the tem-
perature, �rel ¼ ð@�Þ2=kBT [7], and, therefore, introducing
this dependence into the relaxation time � of the numerical
model, we obtain the correct function for the viscosity. In
numerical units (�x ¼ �t ¼ c ¼ 1), we set the relaxation
time to � ¼ �0T0=T þ 1=2, where T0 is the initial tem-
perature and �0 the initial relaxation time.

The hydrodynamics equations are similar to the non-
relativistic Navier-Stokes equations with the exception of
the compressibility term �@p=@t. This term is most likely
negligible at low frequencies, but it may become relevant
at higher ones. The Reynolds number Re, measuring the
strength of inertial versus dissipative terms [4], is given by
Re ¼ ðsT=c2ÞðLUtyp=�Þ, where L and Utyp are the charac-

teristic length and flow velocity of the system, respectively.
In lattice units, it reads as

Re ¼ 3LUtyp

c2�tð�� 1=2Þ : (3)

According to classical turbulence theory, vortex shedding in
graphene is expected for Reynolds numbers well above 1,
typicallyRe� 10–100. To detect signatures of preturbulent
behavior in graphene experiments, one can measure the
fluctuations of the electric current through the graphene

sample. The current density is defined by ~j ¼ �c ~u, and
the total electric current is calculated integrating the current
density along the transverse (y) coordinate. The character-
istic fluctuation frequency can then be related to the vortex
shedding frequency. Macroscopic speeds u� 105 m=s
could be achieved by the electrons in graphene [8]. The
Reynolds number rewrites as Re ¼ UtypLT=c

2ð�=sÞ.

According to Ref. [4], �=s takes values around 0:2@=kB,
at temperature of 300 K, so that we can write Re ¼
UtypL=�eff , �eff ¼ c2�=Ts� 0:005 m2=s being the effec-

tive kinematic viscosity. Therefore, a sample of size
L ¼ 5 �m, within reach of current technology, would yield
Re� 100, sufficiently high to trigger preturbulent phe-
nomena, such as vortex shedding. To test the idea on quan-
titative grounds, we implement a simulation on a grid with
1024� 512 cells. The following initial values (numerical
units) were used: � ¼ 0:75, �c ¼ 1:0, ~u ¼ ðux; 0Þ ¼
ð0:002; 0Þ, and the Fermi speed c ¼ cl ¼ 1:0. The initial
value of the relaxation time was chosen �0 ¼ 0:003 such
that the initial shear viscosity � ¼ 1

3 ð�� 1
2Þ ¼ 10�3.

A circular obstacle, with diameterD ¼ 50, is introduced
at ð256; 256Þ, modeling a 5 �m diameter impurity in the
graphene sample (Fig. 2). With this configuration, and
setting L ¼ D in Eq. (3), the Reynolds number for this
system is Re� 100. We choose periodic boundary condi-
tions at top and bottom, and demand that the distribution
functions of the boundary cells are always equal to the
equilibrium distribution functions evaluated with the initial
conditions. Free boundary conditions are imposed at the
outlet. At the left border, we set inlet conditions, where the
missing information of the distribution functions is filled
by the equilibrium distribution function corresponding to
the initial conditions [9]. We define �t ¼ 0:05 ps.
The drag FDx and lift FDy forces acting on the obstacle

are measured, the vortex shedding frequency being com-
puted in terms of fluctuations of the lift forces. We compare
the frequency of the electric current fluctuations with the
frequency of the drag force, which, in general, is twice the
vortex shedding frequency (see Fig. 3). To relate these to
the vortex shedding, we use a fast-Fourier transform (FFT).
As is well visible from Fig. 3, the current fluctuations
contribute about one part per thousand of the base signal,
and, consequently, they should be liable to experimental
detection. In future applications, involving larger graphene
samples, higher Reynolds numbers will be attained.
Consequently, it becomes of interest to assess the role of
the relativistic corrections to the classical Navier-Stokes
equations.
Comparing the dynamics of the relativistic and n

onrelativistic fluids, two basic differences emerge: the
relativistic correction term �@p=@t and the viscosity de-
pendence with the temperature, Eq. (2). In order to assess

FIG. 2 (color online). Vortex shedding in graphene at Re ¼
100, using a grid of 1024� 512 cells. The color scale represents
the absolute velocity of the fluid.
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whether these terms play an important role, we implement
three simulations on a grid of size 2048� 1024 cells. In
the first simulation, we model the full relativistic equa-
tions; in the second one, the relativistic effect �@p=@t is
removed; and in the third one, the viscosity is forced to be a
constant. The same initial configuration as before is used
with the exception of ~u ¼ ðux; 0Þ ¼ ð0:03; 0Þ and D ¼ 100
(in this case, modeling an impurity of diameter 150 �m).
The impurity is now centered at ð512; 512Þ. With this
configuration, Eq. (3) gives Re� 3000. The simulations
run up to 106 time steps (with �t ¼ 1:5 ps).

From Fig. 4, we find that, in the case of constant vis-
cosity, the frequency is a bit higher than the one corre-
sponding to the full relativistic case. On other hand, if the
term�@p=@t is removed from the equations, the frequency
decreases. We conclude that, in order to compare to high
precision measurements of the vortex shedding frequen-
cies, these terms cannot be ignored. To study the frequency

of the vortex shedding, we vary the initial velocity in
order to obtain different Reynolds numbers. The Strouhal
number St is defined as the dimensionless frequency of the
vortex shedding and can be calculated as St ¼ fsL=Utyp,

where fs is the frequency of the vortex shedding. Figure 5
shows that the relation between St and Re is very similar
for the relativistic and nonrelativistic fluids, with a fast
growth of St in the range 200< Re< 1000, followed by a
flattop at St� 0:25 [10] for Re> 1000. From the Strouhal
number, we can obtain the frequencies of the vortex shed-
ding as fs ¼ 0:2Utyp=L. The frequency of the drag force is

twice that of vortex shedding, namely, fDs ¼ 0:4Utyp=L.

As a result, once the Reynolds number is known, one can
compute the frequency of the drag force, the Strouhal
number, and then compare with the FFT of the electric
current measurement in the sample. The mean value of the
drag force �FDx, reported in the inset of Fig. 5 as a function
of the Reynolds number, shows a monotonic dependence in
the range of Re explored here.
Another kind of setup to detect preturbulence in gra-

phene experiments, with the possibility of being imple-
mented nowadays, consists of building a constriction,
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FIG. 5. Strouhal number St as a function of Re for both non-
relativistic and relativistic fluids. In the inset, the mean value of
the x component of the drag force as a function of the Reynolds
number is shown. The error bar is of the size of the symbol.
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FIG. 3. FFT of the electric current fluctuations �Ig, in the
graphene sample (top right), due to the vortex shedding as a
function of time. Also, the FFT of the drag force acting on the
obstacle is shown (top left). This result refers to Re ¼ 100. At
the bottom, the fluctuations in the electric current Ig are shown as

a function of time.
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FIG. 6 (color online). The same case of Fig. 4, but in the case
of the constriction at Re ¼ 25, using a grid with 1024� 1024
cells. Also, the lift force acting on the obstacle as a function of
time is shown (inset).
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FIG. 4 (color online). Frequencies of the vortex shedding at
Re ¼ 3000, using a grid of 2048� 1024 cells, are shown. These
are calculated for three different cases: the full relativistic,
nonrelativistic, and relativistic with constant viscosity. In the
inset, the lift force acting on the obstacle as a function of time is
shown.
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where the Dirac fluid can develop vorticity patterns as it
crosses through. Figure 1 shows the vorticity at Re ¼ 25,
where the characteristic length L ¼ 50 cells has been
chosen as the distance between the tips. In this case, the
initial velocity is taken ~u ¼ ðux; 0Þ ¼ ð0:0005; 0Þ, in lattice
units, and the simulation is performed using a grid of
1024� 1024 cells. We simulate two systems, one with
the full relativistic equations and the other one by just
removing the relativistic term @p=@t. From the simulations
(see Fig. 1), we conclude that the relativistic contribution
affects the time to the onset of instability, and, from Fig. 6,
we can appreciate that, as for the circular impurity, the
frequency of the vortices presents a shift due to the rela-
tivistic corrections. However, both constant viscosity and
removal of the relativistic correction contribute to an in-
crease of the frequency of the fluctuations. Figure 7 shows
how such fluctuations can be measured and the character-
istic frequencies (see red circles in Fig. 7) related with the
drag force acting on the constriction. Note that, in order to
achieve Re ¼ 25, at a speed of 0:1c, the distance between
tips is about 1:25 �m.

As for the case of the circular impurity, we can find the
characteristic relation between the Strouhal number and
the Reynolds number for this geometrical setup (see
Fig. 8). From the inset of Fig. 8, we observe that the drag
force decreases slightly, as the Reynolds number is in-
creased, and exhibits a noticeable difference between the
nonrelativistic and relativistic cases.

Summarizing, we have shown that, in the range of
Re� 102, vorticity patterns can be indirectly observed by
measuring the electric current fluctuations in the graphene
sample. However, using a different geometry, like a con-
striction, signatures of preturbulence can be detected al-
ready at Reynolds numbers as small as Re� 25. We have
also compared the effects of relativistic corrections, such
as dynamic compressibility and the dependency of the
viscosity on the temperature, on the dynamics of the sys-
tem. In these cases, the temperature dependency of the
viscosity and the term @p=@t produce a shift in the fre-
quencies of the vortex shedding and, therefore, in the

electric current fluctuations. Additionally, the relativistic
correction term, �@p=@t, is found to delay the instability
process in the case of the constricted flow.
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