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We consider a noninteracting disordered system designed to model particle diffusion, relaxation in

glasses, and impurity bands of semiconductors. Disorder originates in the random spatial distribution of

sites. We find strong numerical evidence that this model displays the same universal behavior as the

standard Anderson model. We use finite-size scaling to find the localization length as a function of energy

and density, including localized states away from the delocalization transition. Results at many energies

all fit onto the same universal scaling curve.
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The disorder-induced transition from extended to local-
ized states in noninteracting quantum systems has been a
rich source of physics insight for over 50 years [1]. It is
relevant for a broad range of transport properties [2], glass
formation [3], conductivity of composites [4], and random
walks [5], as well as for nonradiative recombination in
intermediate-band photovoltaics [6]. Scanning-tunneling
and Bose-Einstein condensate experiments are increasingly
able to probe localization properties directly [7]. The
delocalization transition is usually studied by using the
standardAndersonmodel,which considers a noninteracting
tight-binding lattice with uniform nearest-neighbor cou-
pling and random on-site energies [1]. For systems in which
the disorder originates in the random configuration of the
sites rather than, e.g., random local fields, it is better to
consider the so-called topologically disordered or Lifshitz
model, in which sites are distributed randomly in space;
there are no on-site energies and all pairs of sites are con-
nected by hopping terms with amplitude exponentially
decayingwith the distance between them [8]. As the density
of sites increases, a localization-delocalization transition
occurs, just as in the standard Anderson model. The density
of states [3,8–13] and localization properties [3,10,14] of
thismodel have receivedmuch attention.Herewe obtain the
localization lengths of this model quantitatively as a func-
tion of wave function energy and site density. We adapt the
finite-size scaling method, which has been successfully
applied to the standard Anderson model [15–22], and give
strong numerical evidence that this topologically disor-
dered model displays the same universal behavior.

Model.—We consider noninteracting particles confined
to identical lattice sites distributed randomly in space, with
density �0. Particles can hop between sites with an expo-
nentially decaying hopping coefficient. The Hamiltonian is

H ¼ �V0

2

X

n�m

e�rnm=a
�
B jnihmj; (1)

where jni are the site wave functions, rnm is the distance
between sites n andm, a�B is an effective Bohr radius giving

the decay of the wave functions, V0 is an overall energy
scale, and the sum runs over all pairs of sites. This model is
called topologically disordered because there is no ordered
structure describing which lattice sites are strongly coupled
to each other. This model can describe the Hamiltonian of
impurities with hydrogenic wave functions in a semicon-
ductor, where the hopping originates in overlaps of their
effective atomic wave functions. The dimensionless den-
sity is � � �0a�3B . Experimentally, such systems are found

to have a metal-insulator transition at �1=3 � 0:26 [23]. If
the diagonal components of H are set such that each
column sums to zero, the model can describe glass dynam-
ics [3,13] and continuous time quantum walks [5], but
many properties are similar.
Localization lengths from quasi-1D scaling.—The

localization length � of a localized eigenstate is deter-
mined by the asymptotic decay of the wave function

c � e�jr�r0j=�, where r0 is some location of high wave
function amplitude. Our goal is to find the localization
length as a function of � and E. Finite-size scaling tech-
niques allow us to study computationally tractable small
systems and systematically extrapolate to results for the
true infinite system. We find strong numerical evidence
that this topologically disordered system is controlled by
the same fixed point as the standard Anderson model.
While studies interested in the critical exponents have
focused on systems close to the localization transition,
we are interested in localization lengths across the range
of energies and densities relevant to experiments. We use
results closest to the critical point to determine two critical
parameters and then find localization lengths over the
whole system. As we move away from the critical point,
corrections to scaling should become more important, and
we test our results’ sensitivity to these corrections.
The quasi-1D scaling method, originally applied to the

standard Anderson model, considers several wires of vary-
ing widths w and long lengths [15]. We adapt the recursive
Green function version of the scaling technique, introduced
by MacKinnon and Kramer, to find the localization length
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�w for equivalent wires in our system [16,17] [see the inset
in Fig. 1(a)]; other scaling variables may also be consid-
ered [18]. The key idea is to divide a long wire into slices,
where the sites in each slice are directly coupled only to
each other and to sites in the immediately adjacent slices.
This is not strictly possible for the system of Eq. (1), as all
sites are directly coupled. We take, however, a cutoff Lc

and set expð�r=a�BÞ ! 0 for r � Lc. We start with a single
slice of width w, length L0 � Lc, and periodic boundary
conditions in two dimensions. We add slices adjacent to the
wire and recursively find the portion of the Green function
that connects any site in slice 1 to any site in sliceN at fixed
energy E. We then use the standard method to determine
the localization length �w of the long wire at energy E
[16,17,22]. If the widthw of any wire is too small, adjacent
slices may have no sites within Lc of each other, producing
a disconnected wire [24]. Because of the varying number
of particles in each slice and the varying off-diagonal
matrix elements, the transfer matrix method (reviewed in
Ref. [22]) cannot be used.

The statistical error in �w can be estimated by assuming
that the estimate of �w after N slices is the mean of N=�w

independent and identically distributed samples chosen
from a normal distribution, so the sampling error goes

down as N�1=2 [22]. This is rigorously proved for the
standard Anderson model with Oseledec’s theorem [22],
and we assume that similar statistics hold here. We choose
a maximum error of 1%, which requires 104–106 slices,
depending on the parameters.
After determining �w for a range of widths w,

MacKinnon and Kramer (and many others) use the one-
parameter scaling theory [25] to extrapolate to infinite size
systems. The scaling can be expressed in terms of the
relevant variable �, with � greater (less) than zero for
extended (localized) states. Then the dimensionless quan-
tity �w � �w=w is a universal function of � and w, with
critical exponent � [20]:

�w ¼ f½�ð�; EÞw1=��: (2)

The correlation length is � ¼ j�j��, and we let�c � fð0Þ.
If the topologically disordered model is controlled by

the same fixed point as the standard Anderson model, then
Eq. (2) will hold in our system, with the same fðxÞ.
Previous work has expanded fðxÞ in polynomials [20,21].
We have not found this to be a successful strategy, at least
in part because the underlying functions are strongly non-
polynomial away from the transition region; we know the
asymptotic limits fðx ! �1Þ ¼ jxj�� [17]. We choose to

fit to log�w ¼ logfð�w1=�Þ � h0ð�w1=�Þ, which must sat-
isfy h0ðx ! �1Þ ¼ �� logð�xÞ. These limits are obeyed
by the function �ðxÞ ¼ �sinh�1ðx=2Þ. We then fit our data
to h0ðxÞ ¼ �ðxÞ þ �ðxÞ, where �ðjxj ! 1Þ ¼ 0.
The scaling form [Eq. (2)] applies only forw sufficiently

large. At smallw, corrections to scalingmodify Eq. (2), and
they have proven essential for accurate determination of �
and�c [20]. Corrections to scaling require the introduction
of some number of irrelevant variables�iðE; �Þ, which have
no effect on the scaling in the limit w ! 1. We illustrate
with only one irrelevant variable �. We rewrite our scaling

equation as log�w ¼ hð�w1=�; �w�jyjÞ, where y is another
critical exponent. We expand h in powers of �w�jyj:

log�w ¼ X

m¼0

�mw�mjyjhmð�w1=�Þ; (3)

whereh0 is the limiting one-parameter scaling function. It is
often sufficient to keep onlym ¼ 0; 1 in Eq. (3) [20], which

we will do here. We then define log�corrected � log�w �
�w�jyjh1ð�w1=�Þ.
We are interested in finding the localization length at

many values of E, unlike the usual choice of E ¼ 0. We
choose 14 values of density and 40 values of energy satisfy-
ing �2 	 E=V0 	 0:5, focused around the relevant ener-

gies for the metal-insulator transition near �1=3 � 0:26. We
do not study E ¼ 0 because isolated sites always produce
eigenvalues with E ¼ 0, causing divergences in the Green
functions. The density of states (DOS) is shown in the inset

FIG. 1 (color online). Scaling function for data with w � 25,
including one correction to scaling �with y ¼ 2:7. The thin solid
line is the fit. In (a), the dashed line shows the asymptote �ðxÞ ¼
�sinh�1ðx=2Þ, showing good agreement in the strongly localized
regime (bottom right). In (b), the relevant function h0ðxÞminus the
asymptotic�ðxÞ is plotted. Dashed lines show the three Gaussians
from the fit of�. Statistical errors in� are smaller than point sizes.
There are 5829 data points and 893 fit parameters—8 for the
Gaussians, 1 for y, 2 for h1, and 441 each for�ð�; EÞ and�ð�; EÞ.
The normalized 	2 statistic per degree of freedom d is 7.5. 70% of
the data points are within error of the fit. [Inset in (a)] A wire of
width w is constructed by sequentially adding slices (shown at
right) to an existing wire. Each slice has length L0 � Lc and has
randomly distributed sites of the chosen density. [Inset in (b)]
Density of states for three site densities, calculated with 1500 sites
and 100 realizations of disorder. Curves offset for clarity. At high
density, the DOS becomes asymmetric.
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in Fig. 1(b). The DOS is well-understood in the low-density
[3] and high-density, low-energy [9,12] limits. We discard
points in the tails of the DOS contributing less than 0.1% of
total states, which are known not to obey one-parameter
scaling [26]. We take L0 ¼ 15a�B and Lc ¼ min½L0; w=2�.
At each �, we take w from 22a�B in increments of 3a�B up to

the largest system size we find computationally tractable.
For the 14 densities, the maximum w=a�B studied are (121,

103, 88, 79, 70, 61, 55, 52, 46, 43, 40, 37, 34, 31), from
lowest to highest density. Previous studies ofmobility edges
and critical exponents have performed separate scaling at
each E [27]. In this work, all of the data collapse onto a
single scaling curve (see Fig. 1), showing universality in-
dependent of energy. These calculations used approxi-
mately 24 CPU years of computing time.

We approximate �ðxÞ as a sum of three Gaussians with
nine free parameters. Within the search loop, for each
proposed �ðxÞ, we find �ð�; EÞ [and possibly �ð�; EÞ]
independently at each value of ð�; EÞ, giving several hun-
dred additional parameters. It would be preferable to have
a functional form for �ð�; EÞ, but we did not find a
parametrization that permitted accurate fits. We include
only ð�; EÞ with at least 4 values of w; the average number
of values of w at each ð�; EÞ is 15. Where included, we
approximate h1ðxÞ as a second-order polynomial with
h1ð0Þ ¼ 1, which fixes the scale of �.

Since � and�c are most sensitive to data near the critical
point, we determine them with a restricted data set of 934
points at 105 values of ð�; EÞ closest to the critical point.
Fitting with corrections to scaling gives � ¼ 1:61ð55; 68Þ
and �c ¼ 0:577ð70; 79Þ, where the 95% confidence inter-
vals have been determined by bootstrap resampling [28]. In
these fits, the normalized least squares 	2 is approximately
half the number of degrees of freedom (710), which may
imply that our error estimates are too large. Previous work
has shown that in the standard Anderson model � ¼
1:58� 0:03 and�c ¼ 0:576� 0:002 [20]. Given this con-
firmation that the critical parameters of the two models
agree, the remaining fits are performed with � and�c fixed
to 1.58 and 0.576, respectively [29]. The consistency of�c

with previous work indicates that the lattice spacing in the
standard Anderson model is equivalent to a�B in this model.

Figure 1(a) shows the scaled data, with one correction
to scaling. The upper branch shows the extended states
(� ! 1 as w ! 1), and the lower branch shows localized
states. The extended state curve does not approach its
� ! 1 asymptote due to a lack of data in the computa-
tionally demanding high-density regime. Figure 1(b)
shows the same fit with � and the irrelevant corrections
subtracted. The dashed lines show the constituent
Gaussians in �, which are not well-constrained in the fits.
See [30] for other fits. Figure 2 shows the resultant
correlation length �ð�; EÞ ¼ j�j��. At each �, the corre-
lation length falls smoothly as E moves away from the
delocalization transition, just as we expect. These results
give confidence that the �ð�; EÞ are not simply arbitrary

parameters that happen to produce good scaling fits but
rather are determined by the underlying physics. We find,
however, that �ð�; EÞ [and thus �ð�; EÞ] is quantitatively
determined only for localized states.
Previous high accuracy numerical works on the standard

Anderson model have evaluated their fits with the quality
of fit Q (also known as the p value) from the 	2 statistic
and the number of fitting parametersNP [20]. Our fits to the
full data haveQ ¼ 0, indicating that statistical fluctuations
of the numerical procedure alone are insufficient to explain
the deviations of the data from the model. This is not,
however, surprising. Our study has several thousand
degrees of freedom, d ¼ ND � NP � 1, where ND is the
number of data points, which gives it statistical power to
detect relatively small deviations between the model and
the data. In the true scaling function, �ðxÞ is not actually
a sum of three Gaussians, and we are sensitive to the
deviations between the true �ðxÞ and its model. We should
be able to add more Gaussians to � to better approach the
universal function, but fitting becomes difficult. If we are

FIG. 2 (color online). (a) Correlation lengths �ð�;EÞ from the
fit of Fig. 1, for each of the 13 densities which produced enough
data to be studied, offset for clarity. Solid circles mark localized
states, and crosses mark extended states. Solid and dashed lines
are guides to the eye. As expected, the correlation length in-
creases smoothly as the mobility edge is approached from either
side. This figure shows the choice of energies for study, which are
focused on the area of interest for the critical density, near �1=3 ¼
0:24. The mobility edge is asymmetric just as is the density of
states, with the upper mobility edge closer to E ¼ 0 than the
lower mobility edge. The ð�; EÞwith low density of states (lower
left) are excluded. (b) Deviations in fitted values of the scaling
variable �ð�; EÞ from 92 different fits with and without correc-
tions to scaling and with the smallest value of w taken to be 22,
25, or 28 (in units of a�B). Localized states with �<�0:05 are
determined within 10% by the scaling fits. See [30].
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not entirely interested in the exact shape of �ðxÞ, then this
deviation is not a concern. We cannot, however, exclude
the possibility that the deviation is caused by the scaling
procedure breaking down away from the critical point.

Since we are interested in extracting correlation lengths
� ¼ j�j��, a better determination of the quality and con-
fidence of the fits is to compare the resultant �ð�; EÞ for
different fitting procedures. We compare fits with and
without corrections to scaling and with the smallest w
being 22, 25, or 28, in units of a�B. Depending on initial
guesses, fits can arrive at a number of different local
minima. We use a multistart procedure for the fitting,
starting with 100 widely varying parameters for �ðxÞ and
h1ðxÞ. We find that the ‘‘best fits,’’ judged solely by min-
imizing 	2, have highly oscillatory �ðxÞ, discontinuous
�ð�; EÞ, large deviations from the asymptotic form even
for strongly localized states, or large corrections to scaling;
they generally have multiple of these features. If we
exclude the fits with these four characteristics, for
w � 25 the best fits without (with) corrections to scaling
have 	2=d � 70 (8). Including the anomalous fits, we can
find 	2=d � 31 (4). We find �ð�; EÞ from 92 different fits
and, independently at each ð�; EÞ, find the mean h�i and
standard deviation ��, shown in Fig. 2(b). The values of
�ð�; EÞ are found to vary by less than 10% in the localized
regime, except for the points closest to the delocalization
transition. For � < 100a�B, we can consider the localization
lengths to be given quantitatively by the scaling method.
Because of the lack of strongly extended states, �ðx > 0Þ is
not well-determined, and the fits show a range of different
shapes. It follows that �ð�; EÞ in the delocalized region
varies widely. Accumulating more data in the extended
regime should fix this problem.

This scaling technique quantitatively gives the localiza-
tion lengths at nearly any localized ð�; EÞ we care to study.
Application of this method to systems with on-site disor-
der, in addition, should shift the mobility edges ‘‘inwards’’
so that more states are localized. These localization lengths
allow insight into the properties of a range of material
systems, and in future work we will consider their effect
on intermediate-band photovoltaics.
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