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In this Letter, we explore the relations between tracer diffusion and flow heterogeneities in amorphous

materials. On the basis of scaling arguments and an extensive numerical study of an athermal elastoplastic

model, we show that there is a direct link between the self-diffusion coefficient and the size of cooperative

regions at low strain rates. Both depend strongly on rate and system size. The mean square displacement

of passive tracers thus gives information about the microscopic rheology, such as the geometry of

cooperative regions and their scaling with strain rate and system size.
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Under the application of sufficiently large stresses, solid
amorphousmaterials, such as dense emulsions [1], colloidal
and granular systems [2], or molecular glasses [3], undergo
plastic deformation and flow. This yielding behavior usu-
ally comes along with peculiar spatial features, such as
deformation heterogeneities, shear bands [4], or nonlocal
flow behavior [1]. At the fundamental level, the emerging
picture to describe these properties involves local dissipa-
tive rearrangements, the so-called ‘‘shear transformations’’
introduced by Argon [5], cascading via long range elastic
interactions. This scenario has been largely confirmed by a
number of numerical [6,7] and experimental [8] studies of
quasistatic deformation in amorphous systems. It was also
fruitful on the theoretical side and served as the basis for
various rheological descriptions, which aim at describing
the statistical collective properties of plastic events [6,9,10].
Yielding, nonlocality in the flow behavior, enhanced mo-
bility [3], and heterogeneities are therefore only different
aspects of the same underlying physics.

On the experimental side, results indicate that the diffu-
sion of tracer particles, e.g., in sheared foam systems and in
colloidal glasses, is strain rate dependent [11,12]. Further
observations concern the strong nonlocal effects in the me-
chanical response even in quiescent regions far away from
the flowing material [13]. The observation of a coupling
between enhanced particle diffusion and an imposed defor-
mation is quite natural in the context of slowly driven sys-
tems, where the external driving provides a source of energy
that may share some characteristics of a thermal bath [14].

In this Letter, we establish a direct link between flow-
induced dynamical heterogeneities and the diffusive dy-
namics of tracer particles immersed in a deformed system
(see Fig. 1). We present a general scaling relation between
the diffusion coefficient of tracer particles and the 4-point
correlations that quantify flow heterogeneities. This allows
us to rationalize the strain rate dependence, as well as a
strong finite-size dependence of the diffusion coefficient in

sheared amorphous materials. In a first part we discuss the
general scaling arguments for such a connection, and in the
following we support these arguments on the basis of large
scale simulations of a mesoscale elastoplastic model of
yield stress materials. This model incorporates basically
only elasticity and a simple modeling of plastic events,
without using any atomistic-level details. Despite its sim-
plicity, this model accounts for complex cooperative be-
havior and nontrivial scaling laws.
A scaling argument.—We start from the microscopic

picture of shear transformation events. Each event is as-
sumed to correspond to a local Eshelby transformation
[15], with a strain amplitude �"0 localized in a zone of
linear size a. The displacement field for an event occurring
at the origin decays algebraically; in 2D it reads uðrÞ ¼
ð2a2��0xy=�r4Þ � r. If we consider the nonaffine part of
the dynamics of tracer particles in an athermal medium,
their relative position rT will be determined by the time
integrated velocity field v caused by the surrounding plas-
tic events:

r TðtÞ ¼ rð0ÞT þ
Z t

0
dt0

XNpðt0Þ

i¼0
v½rTðt0Þ � riðt0Þ� (1)

FIG. 1 (color online). Schematic view on the heterogeneously
distributed cascading plastic events (left) and the resulting long
range effects on the diffusion of a tracer particle (right).
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with rð0ÞT ¼ rðt ¼ 0Þ, ri the position of the ith plastic event,
and NpðtÞ the number of plastic events at time t.

To give an estimate for the mean square displacement of
these tracer particles in the highly cooperative regime, we
introduce the notion of cooperative events that span a
cooperative volume Vc and have a typical duration t�.
The typical mean square displacement due to an coopera-
tive event (avalanche, slip line, or a more complex object,
depending on the geometry) can be estimated as h�l2i ¼
�2

R
Vc
ddr

R
Vc
ddr0Cðr� r0Þ, with � the density of elemen-

tary events in the cooperative volume and Cðr� r0Þ ¼
huðrÞuðr0Þi. This yields

h�l2i � a4�"20
�L2

�2V2
c ðt�Þ (2)

up to logarithmic corrections originating from the displace-
ment field correlations [16]. The number of the cooperative
events Nc occurring during a strain interval �� can be
estimated by the total number of plastic events Npð��Þ ¼
L2��=a2�"0 divided by the number of events in the
cooperative volume Ncð��Þ ¼ Np=�Vc. If we further as-

sume that the cooperative events are statistically indepen-
dent, the diffusion coefficient D for the tracer particles in
the limit of weak strain rate _� can be written as D ¼ _� ~D
with

~D ¼ Nch�l2i
4��

� a2�"0
4�

�Vc: (3)

The appropriate tools for describing cooperativity are the
‘‘4-point’’ correlation functions that quantify the correla-
tion in space and time between events and are described in
more detail below. The 4-point function of interest here
will be the one associated with plastic activity rather than
particle displacements. The integral over space of such
correlation functions, denoted by �4ðtÞ, goes in general
through a maximum at a finite time t�, which can be used as
a measure of the volume over which events are correlated.
Therefore we expect in macroscopic systems that the dif-
fusion coefficient should scale in the same manner, i.e.,

~D� �4ðt�Þ: (4)

As we will demonstrate in the example below, �4ðt�Þ is not
only strain rate but also strongly system size dependent.
This behavior originates from the long range correlations
of the displacement field created by the plastic events. As a
result we recover the same strong nonlocal effects for the
diffusion coefficient. This is consistent with the experi-
mental observations that predict a sensitive mechanical
response to distant active regions [13] and with results
from simulations of simple particle systems [16].

An elastoplastic mesoscale model.— To test the ideas
described above, we performed large scale simulations of a
simple mesoscopic model for the flow of yield stress
materials, introduced by Picard et al. [15]. The model is
restricted to athermal systems and to a plane geometry.

It features the dissipation due to local plastic events and the
associated elastic response that relaxes the stresses over the
system. These minimal ingredients are sufficient to gener-
ate a complex rheological behavior [15]. Approximating
the rearrangements by spherical inclusions (Eshelby prob-
lem), one expects a fourfold quadrupolar symmetry for the
inhomogeneous part of the stress propagator Gðr; �Þ ¼
1

�r2
cosð4�Þ. To simplify the model further, we consider

an incompressible medium and assume that the micro-
scopic geometry of the plastic events is the same as the
one of the macroscopic shear, which permits a scalar
description of the stress. The values of this local stress
�i� are encoded on a square lattice of size N ¼ L2, given
in units of a2, the typical size of a plastic event (e.g.,
several grains in the case of granular material).
The deterministic part of the stress dynamics reads, by

using dimensionless quantities,

@t�i�ðtÞ ¼ _�þ 2
XLx

j¼1

XLy

	¼1
Gij

�	 _"
pl
j	; (5)

where the time t is measured in units of an elementary
relaxation time 
, the stress � in units of the local yield
stress �y, and the strain rate _� in units of the critical value

_�c ¼ �y=
�, � being the shear modulus. _�c indicates the

change from a Newtonian to a non-Newtonian flow behav-

ior. Gij
�	 is the discretized propagator for a finite geometry

with periodic boundary conditions [15]. We assume for the
dynamics of the plastic part of the strain _"pl a viscoelastic-
like relaxation of the material, weighted with a local state
variable ni� indicating whether a site is plastically active or

not: _�pli� ¼ ni�ðtÞ�i�ðtÞ=2. The stochastic dynamics of the
activity is ruled by the following dynamics for the plastic
state variable

ni�: 0 !

�1
plast

�i�>1
1 0  


�1
elast

8 �i�

1:

In simulations we chose 
plast ¼ 
elast ¼ 1 in units of 
.

Note that convection effects on the stress and the activity
have been neglected to keep the model as simple as pos-
sible. The lack of convection leads basically to an addi-
tional symmetry for the spatial arrangements of the plastic
events. This affects the shape of the heterogeneities but
will not alter the general relation between dynamical het-
erogeneities and the diffusion dynamics.
Dynamical heterogeneities.—To obtain the scaling of

the cooperative volume Vc entering Eq. (3), we study the
dynamical correlations within the model described above.
Under the influence of the external strain rate _�, the system
reaches a nonequilibrium steady state, where two-time
correlations of all quantities in the system become time-
translation invariant. This steady state is reached for a fixed
strain independent of the strain rate. A first indication for
growing dynamical heterogeneities with decreasing strain
rate is the behavior of the two-time correlation function of
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the local stress fluctuations �i�ðtÞ ¼ �i� � �d, where �d

is the steady state stress averaged over time and space. This

function reads CðtÞ ¼ h�i�ð0Þ�i�ðtÞ=�ð0Þ2ic, where the bar
indicates a spatial average and the brackets a configuration
average. In the limit of low strain rate, a data collapse is
obtained when C is plotted as a function of strain [see
Fig. 2(a)]. The relaxation time is therefore inversely pro-
portional to strain rate, although a deviation from this
behavior is observed as the strain rate increases. A hint
to the existence of a complex, cooperative dynamics lies in
the nonexponential behavior of C, which can be interpreted
as resulting from the coexistence of regions with fast and
slow dynamics. Such dynamical heterogeneities are re-
vealed by the study of a 4-point correlation function

Gði�Þ4 ðtÞ ¼
X
j	

½h�i�ð0Þ�i�ðtÞ�j	ð0Þ�j	ðtÞic

� h�i�ð0Þ�i�ðtÞich�j	ð0Þ�j	ðtÞic�: (6)

The integral of G4 over space yields the variance of the
two-time correlation function �4ðtÞ ¼ N½C2ðtÞ � C2ðtÞ�

with C2ðtÞ ¼ h½�i�ð0Þ�i�ðtÞ=�ð0Þ2�2ic. �4 generically dis-
plays a maximum at a time t� corresponding to the time of
the largest heterogeneity of the system and, in general, is
the typical decay time for C. Moreover, �4ðt�Þ can be
interpreted as the number of sites involved in events at
the cooperativity maximum and is therefore identified with
the number Vc introduced in the first part.
As expected from the study of C, t� scales with the

inverse of the applied strain rate. A more interesting feature
is the growth of �4ðt�Þ as _�! 0, which clearly indicates
the increasingly heterogeneous behavior of the system
[17]. A more detailed study of G4 shows that this function
is strongly anisotropic, a result of the special form of the
stress propagator [see Fig. 2(c)]. Averaging G4 over disks
of different radii reveals a fractal dimension of the coop-
erative domains close to 3=2, which is consistent with the
finite-size scaling displayed in Fig. 2(d). To obtain this
scaling we plot the height of the peak as a function of _� for
different system sizes in the inset in Fig. 2(d). Clearly, we
observe a strong size dependence. In an infinite system we
expect that the fractal dynamical cooperation length, tradi-
tionally denoted as �4ð _�Þ, would grow as a negative power
of _�. However, in a finite system, this length will saturate
when reaching the limit of the sample. This effect leads to
the plateau region in the �4 curve with value �0. For a fixed
system size we reach this plateau below a critical strain rate
_��. It is then natural to write the following finite-size

scaling: �4ð _�; LÞ ¼ L3=2fð½�4ð _�Þ=L�3=2Þ with a scaling
function fðxÞ that is linear for small values of x and
saturating for large x. This hypothesis is perfectly con-
firmed in Fig. 2(d), with �4 � _��1 [18]. We expect the
specific value for the fractal dimension for the geometry of
the heterogeneities to depend on some specific details
of the model. Here, cooperative events are free to spread
in the directions of the two main axes due to the additional
symmetry introduced through the absence of convection in
the model system. This results in fractal structures with
dimension larger than unity rather than one-dimensional
slip lines. We believe this behavior to be representative of
three-dimensional systems where an additional direction is
introduced, in agreement with earlier results on 3D mo-
lecular dynamics simulations [19].
Diffusion.—Within the present model, we introduce

diffusion of tracers by considering the nonaffine motion
originating from the long range displacement fields in-
duced by plastic events. We then associate with each
(mesoscopic) event a corresponding continuous displace-
ment field (as introduced in the former scaling argument)
and use it to define the mean square displacement of the
tracer particles. Noninteracting tracer particles are as-
signed to every lattice site, and their fictitious trajectory
is built progressively by adding up contributions from
all plastic events. In this way, the mean square displace-
ment h�r2i can be obtained and a diffusion coefficient

D ¼ _� ~D with ~D ¼ h�r2i=4�� can be extracted
with good accuracy. The mean square displacement as a

FIG. 2 (color online). Dynamical heterogeneities in the stress
field. When not otherwise specified, the system size is N ¼ 216.
Top left: Normalized two-time autocorrelation function of
the stress as a function of strain ( _� ¼ 10�2; 10�2:5; 10�3;
10�3:5; 10�4). The inset shows the same quantity as a function
of time. Top right: Time evolution of the dynamical susceptibil-
ity (the same values for _�). Bottom left: Spatial shape of the
normalized 4-point stress correlation function G4 for a strain rate
_� ¼ 10�4 at time t� where the dynamical susceptibility is
maximal. Bottom right: Finite-size scaling plot for the maxima
of the dynamical susceptibilities. Shown are the maxima as a
function of the inverse strain rate, both normalized by the system
size (þ , N ¼ 212;�, N ¼ 214; �, N ¼ 216). The dotted line has
slope one, and the inset shows the raw data.
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function of strain is ballistic for small strains and becomes
diffusive after a transient regime (�� � 1), with a well
defined slope ~D; see the inset in Fig. 3(a). This quantity
varies strongly with strain rate (for strain rates _� < _�c) and
system size (for all _�); see Fig. 3(a). For a given system
size we find power law behavior for the scaling with strain
rate ~D� _��1:5 down to a critical rate _�D below which a
plateau is reached. This plateau value D0 scales with
system size as D0 � L1:5. In summary, we find the same
scaling behavior as for the dynamical susceptibility
[see Fig. 3(b)] with a crossover length scale for diffusion
‘D proportional to _��1.

Therefore we validate the scaling prediction in Eq. (4),
~D� �4, for large values of L _�, though the onset of finite-
size effects occurs for different parameter values for the
two quantities, _�D � 3 _�� [see the inset in Fig. 3(b)]. This

indicates that the intrinsic length scales for the heteroge-
neities, �4, and for the diffusion, ‘D, are not identical but
only proportional with �4 < ‘D.

Discussion.—Our analysis shows how the mechanism of
deformation in amorphous materials at low temperature,
described by elastic interactions between isolated shear
transformation events, results in nontrivial cooperative
effects that strongly contribute to passive tracer diffusion
at low strain rates. This connection is embodied in a scaling
relation between the diffusion coefficient and the coopera-
tive volume for plastic heterogeneities. We stress that the
diffusion considered here is associated with the long range
part of the elastic deformation induced by plastic events
and thus does not involve the more direct one, associated
with the motion of particles at the core of the transforma-
tion zones. The former is expected to be dominant at a
small strain rate. The peculiarity of this diffusion is a
strong system size dependence that reveals the nonlocal
aspect of the system dynamics.

In the literature, several observations of strain rate and
system size dependent diffusion constants have been re-
ported, in both experiments [12,20] and simulations
[16,21]. Our results suggest that, in addition to strain rate
effects, the measured diffusion may be strongly affected by
system size effects. It would therefore be desirable to
perform experimental finite-size scaling analyses of tracer
diffusion in flowing amorphous materials, by using, e.g.,
confined microfluidic systems, which provide key infor-
mation about the rheological heterogeneities.
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FIG. 3 (color online). Left: Scaling of the diffusion coefficient
~D with strain rate and system size (�, N¼28; þ, N¼210; �,
N¼212). The inset shows ~D versus strain � for _� ¼ 10�3. Right:
Master curves for diffusion coefficient (�) and dynamical suscep-
tibility (þ), normalized by their plateau value as a function of strain
rate in units of the corresponding critical strain rate, indicating the
onset of finite-size effects. The inset shows the unscaled master
curves.
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