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We introduce a thermodynamical model based on the two-temperature approach in order to fully

understand the dynamics of the coherent A1g phonon in laser-excited bismuth. Using this model, we

simulate the time evolution of (111) Bragg peak intensities measured by Fritz et al. [Science 315, 633

(2007)] in femtosecond x-ray diffraction experiments performed on a bismuth film for different laser

fluences. The agreement between theoretical and experimental results is striking not only because we use

fluences very close to the experimental ones but also because most of the model parameters are obtained

from ab initio calculations performed for different electron temperatures.
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The development of optical pump-probe experiments
has revolutionized physics by allowing the study of non-
equilibrium processes on a femtosecond time scale.
Indeed, an ultrashort laser pulse can cause dramatic
changes in the physical properties of covalently bonded
solids and induce ultrafast melting, phase transitions, or
coherent phonons [1]. Coherent excitation of optical pho-
nons is a general phenomenon which has been extensively
investigated in bismuth where the reflectivity change fol-
lowing electronic excitations exhibits damped oscillations
arising from atomic motions corresponding to the A1g

mode [2]. Unfortunately, it is not possible to directly relate
the amplitude of the reflectivity signal to the atomic posi-
tions. The goal of measuring the atomic position as a
function of time remained elusive until the breakthrough
of time-resolved x-ray diffraction experiments, which al-
low atomic motions to be followed stroboscopically with
picometer spatial and femtosecond temporal resolution [3].
Different femtosecond x-ray diffraction experiments have
been conducted to probe the dynamics of the A1g phonon in

laser-excited Bi [4–7]. In this Letter, we try to understand
and to reproduce the time evolution of (111) Bragg peak
intensities measured by Fritz et al. [5].

Bismuth is a semimetallic solid, whose structure can be
derived from the face-centered-cubic lattice by a weak
rhombohedral distortion of the cubic unit cell. The crystal
basis consists of two atoms located along the body diago-
nal of length c at �uc, where u is the A1g phonon coor-

dinate. At 300 K, the equilibrium value of u is ueq ’ 0:234

[8]. It is now well established that the sudden change of ueq
following laser excitation explains the generation of co-
herent phonons in Bi. The time evolution of u can be
obtained from the displacive excitation of coherent pho-
nons model [2]. This model, based on the idea that ueq
increases linearly as a function of the excited carriers
density n and that n decreases exponentially as a function
of time, however, does not capture all aspects of the
phonon and electron dynamics. Two approaches based on
ab initio calculations [9,10] have been proposed to

describe the nonequilibrium electron distribution. Murray
et al. [9] assumed that electrons and holes can be described
by two Fermi-Dirac distributions with the same tempera-
ture but different chemical potentials and obtained a good
agreement with experiments concerning the early oscilla-
tions of the A1g phonon [5]. Zijlstra, Tatarinova, and Garcia

[10] studied the coupling between the A1g and Eg modes

and assumed that electrons and holes can be described by a
unique Fermi-Dirac distribution. They claimed that a two-
chemical potential model does not provide a realistic de-
scription of the electron dynamics in Bi, at least for high
fluences. While such a claim seems to be supported by
recent work based on a two-fluid model [6], the relevance
of the two approaches remains unclear [11,12].
In this work, we consider a model based on the two-

temperature approach [13] where the electron system is
locally described by a single Fermi-Dirac distribution, the
A1g phonon mode obeys a classical equation of motion, and

all the remaining modes are lumped in a unique phonon
bath with specific heatCl. We assume that both the electron
temperature Te and lattice temperature Tl are well defined
at each time because of electron-electron and phonon-
phonon interactions. Making a local energy balance, the
heat, respectively, received by the electron and phonon
systems is given by
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where P is the energy deposited by the laser pulse in the
electron system per unit volume and time, S and U are
electronic entropy and energy per unit volume, respec-
tively, f is the force acting on the A1g phonon, �e is the

electron thermal conductivity, G0 is the electron-phonon
coupling constant which governs the heat transfer from the
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electron system to the lattice, v is the unit cell volume,M is
the mass of a Bi atom, and � is the lifetime of the A1g

phonon. Since the laser spot diameter is much larger than
the penetration depth, we consider only the spatial depen-
dence of the parameters in the direction perpendicular to
the surface, labeled as z. One should notice that all pa-
rameters of Eqs. (1) and (2) depend on Te and u, both of
which depend on the depth z. These equations have to be
solved together with the phonon equation of motion

@2u

@t2
¼ f

2Mc
� 2

�

@u

@t
; (3)

where the last term describes the energy transfer from the
coherent phonon to the incoherent phonon bath and where
the force f is defined by

f ¼ �v

c
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��������S
: (4)

In order to evaluate the force f acting on the coherent
phonon and other quantities involved in our model, we
performed ab initio calculations for different electron tem-
peratures Te and phonon coordinates u. All these calcula-
tions were done within the framework of the local density
approximation for the exchange-correlation functional to
density functional theory using the ABINIT code [14]. Spin-
orbit coupling was included and an energy cutoff of
15 hartree in the plane wave expansion of wave functions
together with a 12� 12� 12 k-point grid for the Brillouin
zone integration was used. These parameters ensure the
convergence of both vibrational and electronic properties
[15]. The experimental lattice parameters at room tempera-
ture are used [8], and volume changes due to an increase of
the lattice temperature Tl are neglected.

First, we calculated both energy U and entropy S
as a function of u and Te and hence obtained UðS; uÞ.
Figure 1(a) shows that the equilibrium position ueq in-

creases from 0.233 to 0.25 as S increases from 0 to
�2:0kB per unit cell. This finding confirms the displacive
mechanism of phonon generation and is qualitatively in
line with the behavior observed by Murray et al. [9] using a
two-chemical potential approach or by Zijlstra, Tatarinova,
and Garcia [10] using the same type of approach as in the
work reported here. If we assume that the laser pulse
energy is deposited homogeneously at the end of the pulse
(�e ! 1), Eq. (1) shows that the electronic entropy S
becomes a constant of motion provided that the energy
transfer from the electron system to the lattice is frozen
(G0 ¼ 0). The solution of Eq. (3) when � ! 1 (undamped
dynamics) then provides the phonon frequency � of the A1g

mode for a given entropy S which depends on the laser
pulse fluence. Figure 1(b) shows that � decreases from
2.93 THz to 0 when S increases from 0 to �1:37kB per
unit cell. This redshift is still in qualitative agreement with
previous theoretical studies [9,10].

We have also calculated the lattice specific heat Cl

within the harmonic approximation [16]. As shown in
Fig. 1(c), the agreement between our calculated lattice
specific heat and the experimental data [17] is good up to
Tl � 300 K. The discrepancies between theoretical and
experimental results become larger at higher temperature
because of anharmonic interactions neglected in our cal-
culation. In our simulations, the initial lattice temperature
T0 was set to 300 K. As T0 � �D, where �D ¼ 119 K is
the Debye temperature, the temperature dependence of Cl

can be neglected. Indeed, ClðT0Þ is only 1% smaller than
the value given by the Dulong-Petit law shown as a dashed
line in Fig. 1(c). The electron temperature dependence of
Cl can also be safely neglected.
Finally, we calculated the electron specific heat of Bi,

Ce ¼ @U=@Te, as a function of electron temperature Te

for different values of u. As expected, the temperature
dependence of Ce is linear at low electron temperatures.
Figure 1(d) shows that a significant positive deviation from
the linear behavior occurs when Te becomes larger than
�300 K and that this deviation increases when u increases,
i.e., when Bi goes toward the hypothetical metallic state
corresponding to u ¼ 0:25. The knowledge of CeðTeÞ is
crucial, not only because it gives a correct estimate of the
rise of temperature in the electron system but also because
it is related to the electron thermal conductivity �e. Indeed,
assuming that the total electron scattering rate is dominated
by the electron-phonon scattering rate, the electron
thermal conductivity can be approximated by �eðTe; TlÞ ¼
�0 � ½CeðTeÞ=CeðT0Þ� � ðT0=TlÞ [18,19], where the
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FIG. 1 (color online). (a) ueq as a function of electronic en-
tropy S. (b) A1g phonon frequency � (in terahertz) as a function

of S. The star indicates the Raman frequency measured at 300 K
[17]. (c) The calculated constant-volume lattice specific heat Cl

(solid line) of Bi compared to experimental data (open circles)
from Ref. [17] for lattice temperatures Tl up to the melting
temperature Tf ¼ 544 K. (d) Calculated electron specific heat

Ce as a function of electron temperature Te for u ¼ 0:233
(circles) and u ¼ 0:24 (triangles).
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dependence on u has been omitted and where
�0 ¼ 11 W �m�1 � K�1 is the experimental value at
room temperature [20].

We can now simulate the time-resolved x-ray diffraction
experiments performed by Fritz et al. [5] on a Bi film of
thickness L ¼ 50 nm excited by a near-infrared laser pulse
whose FWHM is tw ¼ 70 fs. The source term Pðz; tÞ in
Eq. (1) is given by

Pðz; tÞ ¼ 2Fabs

lptw

ffiffiffiffiffiffiffi
ln2

�
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exp

�
�4 ln2

t2

t2w

�
exp

�
� z
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�
; (5)

where lp ¼ 14 nm is the penetration depth at a wavelength

of 800 nm [17] and Fabs is the absorbed fluence. The
solution of the coupled differential equations (1)–(3), for
a set of the two unknown physical parameters G0 and �,
which are assumed to remain constant on the time scale of
the experiment for a given fluence, provides uðz; tÞ and
Teðz; tÞ. As will be seen later, the spatial dependence of u
and Te can be neglected only �100 fs after the arrival of
the laser pulse on the Bi surface. Therefore, the normalized
intensity of the (111) Bragg peak is given by IðtÞ=Ið0Þ ¼
cos2½6�uðtÞ�=cos2½6�uð0Þ� and is convoluted with a
Gaussian with FWHM tX to account for the temporal
resolution of the experiment [5]. The results of a least-
squares fit of our model to the experimental data are shown
as solid curves in Fig. 2 for four absorbed fluences.
The parameters Fabs, G0, �, and tX are given in the caption.

The absorbed fluences used in our calculations are very
close to the experimental fluences with the largest devia-
tion occurring for the curve labeled 3 in Fig. 2. The
electron-phonon coupling constant G0 increases from
0.84 to 1:45� 1016 W �m�3 � K�1, and the decay time �
of the coherent phonon decreases from 0.87 to 0.25 ps
as the theoretical fluence increases from 0.64 to
2:47 mJ � cm�2. The reported electron-phonon coupling
constants are small compared to usual values in metals
[18] because the density of states at the Fermi level is very
small for Bi. Figure 2 shows that the oscillations of the
(111) Bragg intensities are nicely reproduced by our quasi-
isentropic model with the exception of curve 3, where Fabs

is overestimated with respect to the experimental fluence.
It is worth remarking that curves 3 and 4 are very close to
each other while the experimental fluences differ by
0:6 mJ � cm�2. Interestingly, an upward shift of curve 3
by about 0.05 leads to a better agreement with our theo-
retical intensity for a fluence Fabs ¼ 1:79 mJ � cm�2 very
close to the experimental one.
One can now discuss the physical processes playing a

role in the generation of coherent phonons. The laser
energy is initially deposited in the electron system since
the laser pulse duration is much shorter than the character-
istic time for the electron-lattice energy exchange. At the
same time, the heat diffuses in the electron system. The
diffusivity � is approximately constant and given by
�0=CeðT0Þ ’ 100 cm2 � s�1. Therefore, the usual electron
heat transport occurs, and the time needed to uniformize
the electron temperature Te is roughly given by L2=��
250 fs. Our simulations show that the spatial variations of
Te, S, and u can be safely neglected only 100 fs after the
laser pulse maximum. The strong overheating of the elec-
tron system at the end of the laser pulse is illustrated in
Fig. 3(b). The electron temperature reaches 2231 K for
the lowest fluence and 3724 K for the highest fluence.
The corresponding increases of electronic entropy S are,
respectively, 0.39 and 0:98kB per unit cell. As shown in
Fig. 1(a), the increase in entropy leads to an increase in ueq.

The atoms thus start to oscillate around a new equilibrium
position which evolves slowly as a function of time t due
to heat transfer from the electron system to the lattice.
The damped oscillations of the reduced coordinate u as a
function of time delay t are shown in Fig. 3(a). The initial
redshift of the phonon frequency � as the fluence increases
is clearly visible and can be attributed to the decrease of �
as S increases [see Fig. 1(b)]. Figure 3 also shows that the
oscillations of the phonon coordinate u are accompanied
by oscillations in the electron temperature Te whose am-
plitude and damping grow with fluence. The oscillations in
Te and u are in antiphase with respect to each other. Such a
behavior is easy to understand if one assumes that the
electron subsystem undergoes an isentropic transformation
(G0 ! 0). As the metallicity of Bi is enhanced when u
increases, the electronic entropy S at constant electron
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FIG. 2 (color online). Normalized intensities of the (111)
Bragg peak measured by Fritz et al. [5] as a function of time
delay t between the laser pulse and x-ray probe for different
absorbed fluences (symbols) compared to the theoretical calcu-
lation (solid lines). The measured fluences are 0.7 (circles), 1.2
(triangles), 1.7 (squares), and 2:3 mJ � cm�2 (lozenges). The
parameters used in our simulations are given from top to bottom
for curves labeled 1–4: The absorbed fluences Fabs are 0.64, 1.26,
2.18, and 2:47 mJ � cm�2, the effective electron-phonon cou-
pling constants G0 are 0.84, 1.15, 1.40, and 1:45� 1016 W �
m�3 � K�1, and the decay times � are 0.87, 0.64, 0.44, and
0.25 ps, respectively. The uncertainties for � are quite large for
curves 1 and 2 because of the limited duration of the experi-
ments. The fitted value of the FWHM of the x-ray pulses is
tX ¼ 205 fs.
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temperature would increase up to a maximum value for the
largest value of u. In order to compensate for the increase
of S, Te decreases and reaches its minimum value when u
reaches its maximum value. Thus, Te oscillates at the same
frequency as u but in antiphase. Interestingly, such a
behavior parallels that of a gas enclosed in an insulating
piston chamber. Assuming that the gas undergoes an isen-
tropic transformation, the piston when displaced from its
equilibrium position, performs an oscillatory motion while
the gas temperature undergoes a similar oscillatory motion
but in antiphase. In Bi, the electronic entropy S does not
remain constant after the arrival of the laser pulse but
decays slowly due to energy exchange between the elec-
tron and lattice subsystems. The inset in Fig. 3(b) shows
the evolution of the lattice temperature Tl as a function
of time delay t. On the time scale of the experiments
(� 2:5 ps), the increase in Tl ranges from 34 K for the
lowest fluence to 110 K for the highest fluence. Although
the increase of the lattice temperature is significant for
the highest fluence, volume changes are expected to be
delayed as illustrated by the shift in the Bragg angle
occurring on a time scale of �20 ps in experiments [5].
It is thus reasonable to assume that the lattice parameters
remain constant in our simulations.

In conclusion, we have developed a thermodynamical
model in order to simulate the time evolution of the A1g

phonon coordinate following the arrival of a laser pulse of
a given fluence on a Bi film. The intensities of the (111)

Bragg peak measured by Fritz et al. [5] are fairly well
reproduced by our model for fluences very close to the
experimental ones. This success is noteworthy since
the force acting on the coherent phonon as well as most
of the model parameters are obtained from ab initio cal-
culations. The only adjustable parameters are the effective
electron-phonon coupling constant G0 and the scattering
time 1=� of the coherent phonon. Our results show that
(i) both parameters increase as the fluence increases,
(ii) the electronic heat diffusion is crucial, and (iii) the
oscillations of the coherent phonon are accompanied by an
oscillation in the electron temperature. From a fundamen-
tal point of view, this work firmly establishes that a single
chemical potential approach is reliable for describing
the excited electrons and provides a complete scenario
for the generation of coherent phonons in Bi films.
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FIG. 3 (color online). (a) u as a function of time delay t for the
parameters given in the caption of Fig. 2. (b) Electron tempera-
ture Te as a function of time delay t. The inset displays the
variation of the lattice temperature Tl as a function of t. The
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in Fig. 2.
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