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The speed-stress relation for gliding edge dislocations was experimentally measured for the first time.

The experimental system used, a two-dimensional plasma crystal, allowed observation of individual

dislocations at the ‘‘atomistic’’ level and in real time. At low applied stress dislocations moved subsoni-

cally, at higher stress their speed abruptly increased to 1.9 times the speed of shear waves, then slowly

grew with stress. There is evidence that immediately after nucleation dislocations can move faster than

pressure waves.
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The viscoplastic behavior of crystalline solids is largely
determined by the dynamics of dislocation motion under
stress. A key hypothesis is the existence of a relation
between dislocation speed and ambient shear stress. Until
recently, experimental measurements of this relation have
reported dislocation speeds well below that of shear waves
[1,2]. Theoretical models [3] and atomistic simulations [4]
confirm that a speed-stress relation exists for uniformly
moving dislocations; they also predict that at sufficiently
high stress, dislocations move faster than shear waves, and
possibly pressure waves. This prediction has been contro-
versial, since it contradicts linear elastic models [5]. Direct
experimental confirmation by tracking supersonically
moving objects of atomistic size would seem unlikely,
unless an alternative model system were found. Plasma
crystals [6,7] are a highly suitable candidate, since they can
form a genuinely 2D, millimeter-scale lattice composed of
micron-sized particles, with wave speeds of the order of
millimeters per second. Motion of individual ‘‘atoms’’
(particles) is fully resolved in real time, allowing direct
observation of dislocation nucleation and dynamics at the
‘‘atomistic’’ level.

A plasma crystal is a crystalline state of complex, or
dusty, plasma [8–10]. Complex plasma is a suspension of
fine solid particles in a weakly ionized gas [11–13].

Whereas the field of plasma crystals is rather mature, the
study of dislocations in plasma crystals has only recently
begun [6,7,14–19]. Dislocation statistics was studied in
Refs. [15,17]; the core energy was derived from the
Arrhenius scaling of their concentration [17].

Nucleation and dynamics of individual dislocations in a
2D plasma crystal were observed in [7]. The shear stress
necessary for dislocation nucleation and motion was
caused by naturally occurring slow differential rotation of
the plasma crystal (presumably due to the ion drag force
[20]), and hence could not be controlled on purpose.

Supersonic dislocations (faster than the shear wave
speed CT) were observed for the first time. The dislocation
speed vdisl (measured from their Mach cone angles [21])
was distributed in a narrow range of ð1:95� 0:2ÞCT ; the
reason for this narrow distribution remained unclear.
In this Letter, we report the first direct experimental

measurement of the glide speed of edge dislocations as a
function of externally applied shear stress. Shear stress in a
two-dimensional plasma crystal was applied in a control-
lable, homogeneous manner, by a pair of counterpropagat-
ing laser beams. We observed subsonic and supersonic
dislocations with a speed ‘‘gap’’ between them; weak
dependence of dislocation speed on applied stress in the
supersonic regime explains the narrow distribution of vdisl

observed in [7]. We find that supersonic dislocations play a
central role in shear melting, and may be relevant in other
systems, e.g., colloidal crystals [22], twinning [23], as well
as high-rate viscoplasticity [5].
Laser manipulation is a very efficient method of creating

relatively strong shear stress in a plasma crystal. The
radiation pressure of a powerful laser beam in a suitable
configuration is sufficient to shear melt a plasma crystal
and create a shear flow in it [24].
Shear melting of a plasma crystal naturally happens

through increasing nucleation and proliferation of disloca-
tions [11,17]. For example, the 120� zigzag features seen
in [24] in the particle velocity profiles at the onset of plastic
deformation were most probably a signature of moving
dislocations.
To study dynamics of individual dislocations, with the

aim of measuring the speed-stress relation, we imple-
mented a new ‘‘laser indenter’’ configuration, schemati-
cally illustrated in Fig. 1. New distinctive features of this
configuration are the following: (1) Nearly homogeneous
shear stress is created in a narrow gap with a width com-
parable to the interparticle spacing, between two wider
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stripes where the particles are pushed in opposite direc-
tions by the rastered laser beams, and (2) one of the three
axes of the triangular crystal lattice is aligned with the laser
beams. This creates an experimental setting where dislo-
cations nucleate and move in a clearly defined, essentially
uniform and constant shear-stress field.

Our experimental setup was a modified Gaseous
Electronics Conference (GEC) rf cell as in [25], using
similar experimental parameters. Argon plasma was pro-
duced using a capacitively coupled rf discharge. The rf
voltage had amplitude of 309 V peak to peak at 13.56MHz.
The self-bias voltage was �125 V. To ensure that the
system was not overdamped, a relatively low pressure of
5 mTorr was used. The neutral-gas damping rate is then
accurately modeled [26] by the Epstein expression �E ¼
�Ngmg �vgð�prpÞ�1, where Ng, mg, and �vg are the number

density, mass, and mean thermal speed of gas atoms and
�p, rp are the mass density and radius of the particles,

respectively. With leading coefficient � ¼ 1:26 [26], this
gave �E ¼ 0:77 s�1.

A monolayer of highly charged microspheres was levi-
tated against gravity in the sheath above the lower rf ele-
ctrode. The particles had a diameter of 9:19� 0:09 �m
and a mass m ¼ 6:15� 10�13 kg. The monolayer, in the
form of a triangular lattice, included about 6000 particles
and had a diameter of � 60 mm.

The interparticle potential for particles arranged in a
single plane, like ours, is well approximated [27] by the
Yukawa potential: UðrÞ ¼ Qð4��0rÞ�1 expð�r=�DÞ,
where Q is the particle charge and �D is the screening
length. The monolayer is characterized by a screening
parameter � ¼ �=�D, where� is the interparticle spacing.
In our experiment, � ¼ 0:57 mm. We used the spectral
technique of [28] to measure � ¼ 0:8� 0:2 and Q ¼
�15 000� 1500e.

The average sound speeds in the central part of our
plasma crystal were measured to be CL¼34:2�2:4mm=s

and CT ¼ 6:1� 0:6 mm=s, for pressure and shear
waves, respectively. This gives a shear modulus
� ¼ 8:3� 10�14 N=mm. Hexagonal lattice symmetry en-
sures isotropy within the linear elastic regime.
The particles were imaged through the top window by a

digital camera. We recorded movies of 400 frames at 60
frames per second. The 42:6� 42:6 mm2 field of view
included � 5100 particles. The particle coordinates x; y
and velocities vx; vy were then calculated with subpixel

resolution for each particle in each frame.
In our ‘‘laser indenter’’ scheme, two oppositely directed

laser beams are focused down to a fraction of the inter-
particle spacing and they are rapidly (’ 300 Hz) scanned
to draw rectangular stripes on the suspension, as shown in
Fig. 1. The particles react to the averaged radiation pres-
sure. A shear stress 	 ¼ nF=d is created in the d ¼ 1:2�
wide gap between the laser-illuminated stripes, where n is
the number of lattice rows within each stripe and F is the
(averaged) radiation pressure force on each particle. The
shear stress 	 was controlled by varying the output laser
power; they were proportional with the coefficient of
2:82� 10�15 N=mm per 1 W.
Assuming an initially quiescent linear elastic body, sub-

jected to spatially constant opposite body forces in each
stripe suddenly applied at t ¼ 0 and to (neutral-gas) drag
body forces with the rate �E ¼ 0:77 s�1, we solved the
equations of elastodynamics; this predicts that (i) after a
rise time of roughly h=CT ¼ 0:6 s (h is the stripe width),
the shear stress is nearly constant and maximum in the
central unloaded gap between loaded stripes, and
(ii) neutral-gas drag damps out wave reflections. All our
data are taken after this rise time.
When shear stress is suddenly applied, the plasma crys-

tal first undergoes elastic deformation, then defect genera-
tion while in a solid state, and, if the stress is high enough,
onset of plastic deformation and shear flow [24]. Even
before the visible onset of plastic deformation, dislocations
nucleate and move in the lattice; their number rises sig-
nificantly when laser power is increased.
Because of collinearity of the laser beams with a prin-

cipal lattice axis, dislocations nucleate and move in the
narrow gap between the laser-illuminated stripes. This
substantially simplifies the analysis of their motion, which
is nearly one dimensional in the uniform and constant
external shear-stress field.
Dislocations generally moved uniformly after nuclea-

tion; however, during a short initial period their speed was
sometimes higher, see Figs. 2(a) and 2(b). Transitions from
a high to a lower speed were usually well defined.
An explanation of this involves the behavior of shear

strain. It can in principle be measured [7] from the bond-
orientational function c 6 [15,29], shown in Figs. 1(b) and
1(d). For any lattice site, c 6 ¼ 1

n

P
n
j¼1 expð6i�jÞ, where

�j are bond orientation angles for n nearest neighbors. For

small simple shear, jc 6j ¼ 1� 9
2, where 
 is the shear
strain [7]. For an arbitrarily large simple shear (along a

1 0.1| |6 5 mm

(c)

FIG. 1 (color online). (a),(b) Shear stress is applied to a 2D
plasma crystal by a pair of counterpropagating laser beams.
Moving (to the right) dislocation is indicated by a small white
arrow. (c),(d) The same crystal is shown before stress was
applied. (a),(c) The dots are individual particles located inside
their Voronoi cell, highlighted are lattice defects where the
number of nearest neighbors is other than six. A dislocation is
an isolated pair of fivefold and sevenfold lattice defects. (b),(d)
To visualize the shear strain, we use the maps of the bond-
orientational function jc 6j [7,15,29]. The complete trajectory of
this dislocation is shown in Fig. 2(b).
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principal lattice axis), we derived a relation between
jc 6j and 
 which reduces to the above result for small 

(see supplementary Fig. S1 [30]). Up to 
 ¼ 0:58, the
dependence is monotonic and can be used to calculate 

from jc 6j measurements.

We found that dislocations nucleated when a level of
jc 6j ’ 0:35, or 
 ’ 0:36, was reached, with little regard to
the laser power applied. The resulting behavior of jc 6j is
similar to that reported in [7] [Fig. 3(a) therein] for ‘‘spon-
taneously’’ nucleating dislocations. This value of 
 ’ 0:36
is quite a large strain, possibly associated with an unstable
state. Lattice periodicity implies that shear stress 	 is a
periodic function of 
, with period the lattice-invariant

shear 
inv ¼ 1=
ffiffiffi
3

p � 0:58, such that a simple shear along
a lattice axis maps a triangular lattice onto itself.
Assuming, e.g., a sinusoidal 	-
 relation, any strain be-
tween 
inv=4 � 0:14 and 3
inv=4 � 0:43 is unstable, e.g.,

 ¼ 
inv=2 � 0:29 corresponds to a stacking fault, with
atoms on adjacent planes right on top of each other.

This explains why some dislocations travel at a higher
speed just after nucleation (open circles in Fig. 3), then
decelerate abruptly to a lower speed. A thin long region of
high shear strain appears along a glide plane as shown in
Fig. 2(d) (see also Fig. 1 of [7]). From jc 6j measurements,

 in this region is in the range 0.3–0.4; hence, it probably is
a stacking fault. Afterwards, a dislocation nucleates, moves
into this region and annihilates it, then slows down. A
model of Eshelby [31] predicts that a dislocation moving
into a stacking fault can propagatewith arbitrary high speed
above CL. We sometimes observed this at high power

settings. Thus there are two distinct types of dislocation
motion: (i) motion into (and elimination of) a stacking fault
[Fig. 2(e) and open circles in Fig. 3] and (ii) propagation
into a stable lattice [Fig. 2(f) and solid diamonds in Fig. 3].
A calculation in the setting of [3] shows that at a given
stress, a type (i) dislocation can move at speeds above CT

but always faster than a type (ii). This explains the abrupt
slowing down: when the fault is eliminated, a type (i)
dislocation turns into a type (ii). In the presence of thermal
oscillations, the appearance of unstable stacking faults,
resulting in nucleation of fast dislocations that restore
stability, is more likely at higher stress.
Sometimes there is a departure from uniformmotion at a

later stage, which, however, has a simple explanation. For
example, in Fig. 2(b) the dislocation slowed down after
(temporarily) merging with another dislocation at t¼1:5 s.
In some cases, dislocations slow down when entering a
region where the crystal rows are not exactly straight. We
used linear fits of dislocation position versus time at the
stage of uniform motion to calculate the dislocation speed.
The quality of these fits is good, except for the initial high-
speed parts.
The main result of this Letter, the relation between

dislocation speed and applied shear stress, is shown in
Fig. 3. Solid diamonds are for uniform motion of disloca-
tions, open circles for occasional initial faster motion.
Our results are in qualitative agreement with theoretical

models [3] and simulations [4]. The curve in Fig. 3 is a
least-squares fit of the stress-speed relation predicted in [3]
to our uniform-motion data (solid diamonds only).

Between CT and 8:2 mm=s (slightly below
ffiffiffi
2

p
CT �

8:6 mm=s) the speed-stress graph has negative slope,
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FIG. 2 (color online). (a),(b) Positions of individual disloca-
tions versus time elapsed since shear stress 	 was applied. The
value of 	 is different in each example as indicated. Voronoi
diagrams are shown for the dislocation from (b) for four time
instances: (c) before stress was applied, (d) just before nuclea-
tion, (e) during ‘‘fast’’ motion, and (f) during regular motion.
Dislocation positions were calculated as the average positions of
their constituent fivefold and sevenfold lattice defects.
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FIG. 3 (color online). Dislocation speed as a function of ap-
plied shear stress. Open circles are for initial higher-speed
motion (where it was present), solid diamonds for subsequent
uniform motion. Data points for each setting of laser power were
obtained, in most cases, in different experimental runs. The
curve is a fit of the theoretical prediction of [3] to uniform-
motion data (diamonds) only. Horizontal lines indicate the
speeds of pressure and shear waves, CL, CT , respectively.
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shown dashed in Fig. 3, and is thus unstable, which implies
that supersonic dislocation speeds should be above

’ ffiffiffi
2

p
CT , in agreement with our data. This explains the

speed gap between subsonic and supersonic dislocations
observed in Fig. 3; see also [4]. Reference [3] predicts that
supersonic motion occurs above a critical stress (the turn-
ing point of the curve in Fig. 3). The predicted value of this
is 0:66� 10�15 N=mm, compared to an observed value of

0:85� 10�15 N=mm. In the regime above ’ ffiffiffi
2

p
CT a

monotonically increasing relation is predicted between
speed and shear stress. This is roughly the trend in our
experiment. Weak dependence of vdisl on stress in
this regime explains the narrow distribution of vdisl ¼
ð1:95� 0:2ÞCT observed in [7]. A weak dependence of
speed on stress also occurs in simulations [4,32]. The fit
yields a value for the theoretical shear strength of the
crystal of 8:5� 10�15 N=mm, roughly half the Frenkel
estimate of �
inv=� � 0:18�. It is also predicted that
vdisl can exceed CL at stresses above 7:4� 10�15 N=mm,
well above the levels achieved in our experiments.

While there is a trend for dislocation speed to slowly

increase with stress above
ffiffiffi
2

p
CT , data point scatter is

appreciable. We discuss possible reasons. First, apart
from neutral-gas damping, the plasma crystal itself can
behave viscoelastically. The ambient stress would then
depend on time and it would matter when the measurement
is taken. The latter is unlikely, however, since dislocations
move more or less uniformly. There is the possibility
though that the relation between dislocation speed and
stress is itself history dependent in this particular system.

Second, stress can be inhomogeneous due to disloca-
tions arrays (domain boundaries); these generate much
longer-range stress fields than the localized self stress of
single dislocations. This affects moving dislocations.

Third, nucleation or supersonic dislocation motion emits
stress waves which might reflect from the boundary and
alter the speed of dislocations they encounter. However,
neutral-gas damping dissipates these waves before they
reach the crystal edge, as predicted by our stress rise
time calculation. Also, a simple estimate of the shear
wave’s damping length gives CT=�E ¼ 7:9 mm, much
smaller than the crystal radius of � 30 mm. Accordingly,
the wings of observed Mach cones created by moving
dislocations are much shorter than the crystal size.

There are two different regimes of dislocation motion
above CT . In the high-stress regime, ð2:3–3:7Þ �
10�15 N=mm, one observes higher dislocation velocities
on average, and a higher probability of initial fast motion,
including occasional speeds above CL [this does not hap-
pen in the low-stress regime, ð1:1–2:0Þ � 10�15 N=mm].
Another notable feature of the high-stress regime is even-
tual shear melting (shear flow), absent from the low-stress
regime. All data points in Fig. 3 are, however, taken from
the first dislocations to emerge, before shear flow develops.
Shear melting occurs above a critical stress of 0:027�, very
close to values reported for various similar systems [33];

it is caused by a proliferation of dislocations faster than
2CT . These observations point to supersonic dislocation
motion as a key mechanism for shear melting.
We thank S. K. Zhdanov for valuable discussions.
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