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The measurement problem for the optical phase has been traditionally attacked for noiseless schemes or

in the presence of amplitude or detection noise. Here we address the estimation of phase in the presence of

phase diffusion and evaluate the ultimate quantum limits to precision for phase-shifted Gaussian states.

We look for the optimal detection scheme and derive approximate scaling laws for the quantum Fisher

information and the optimal squeezing fraction in terms of the total energy and the amount of noise. We

also find that homodyne detection is a nearly optimal detection scheme in the limit of very small and large

noise.
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The estimation of the optical phase in quantum mechan-
ics is a long-standing problem with both fundamental and
technological implications. The attempts to define a
Hermitian phase operator are the subject of extensive
literature [1] and several experimental protocols to esti-
mate the value of the optical phase have been also proposed
and demonstrated, in particular, using different quantum
strategies and interferometric setups [2–7], which have
been shown to beat the standard quantum limit [8–11].
More recently, the ultimate bounds to the precision of the
phase estimation with Gaussian states have been discussed
[12,13] using local quantum estimation theory. A squeezed
vacuum state has been shown to be the most sensitive at
fixed energy and two measurement schemes have been
proposed to attain the Heisenberg limit.

The estimation of the optical phase is also relevant for
optical communication schemes where information is en-
coded in the phase of traveling pulses. In such a context the
receiver has to decode information that is unavoidably
degraded by different sources of noise, which have to be
taken into account in the quantum estimation problem. So
far, only amplitude and/or detection noise have been taken
into account in the analysis of quantum phase estimation,
e.g., imperfect photodetection in the measurement stage, or
amplitude noise in interferometric setups [14–18]. The role
of phase-diffusive noise in phase estimation has been in-
vestigated for qubit [19,20] and in part for condensate
systems [21,22], while no similar analysis has been done
for a continuous-variable system. Phase-diffusive noise is
the most detrimental for phase estimation since it destroys
the off-diagonal elements of the density matrix. Moreover,
any quantum state that is unaffected by phase diffusion, is
also invariant under a phase shift, and thus is totally useless
for phase estimation.

In this Letter we address phase estimation in the pres-
ence of phase diffusion, seek for the optimal Gaussian
states, and evaluate the ultimate quantum limits to

precision of phase estimation. We also investigate whether
the ultimate performances may be achieved with a feasible
detection scheme and found that homodyne detection is
nearly optimal for very small and large amounts of noise.
When a physical parameter is not directly accessible one

has to resort to indirect measurements. Let us denote by �
the quantity of interest, X the measured observable, and
� ¼ ðx1; . . . ; xMÞ the observed sample. The estimation
problem amounts to finding an estimator, that is a map

�̂ ¼ �̂ð�Þ from the set of the outcomes to the space of
parameters. Classically, optimal estimators are those satu-
rating the Cramér-Rao inequality Varð�Þ � ½MFð�Þ��1

which bounds from below the varianceVarð�Þ ¼ E½�̂2� �
E½�̂�2 of any unbiased estimator of the parameter �. M is
the number of measurements and Fð�Þ is the Fisher infor-
mation (FI) Fð�Þ ¼ R

dxpðxj�Þ½@� lnpðxj�Þ�2, where

pðxj�Þ is the conditional probability of obtaining the value
x when the parameter has the value �. The quantum
Cramér-Rao bound [23–26] is obtained starting from the
Born rule pðxj�Þ ¼ Tr½�x%�� where f�xg is the proba-

bility operator-valued measure (POVM) describing the
measurement and %� the density operator, labeled by the

parameter of interest. Upon introducing the symmetric
logarithmic derivative (SLD) L� as the operator satisfying

2@�%� ¼ L�%� þ %�L� one proves that the FI is upper

bounded by the quantum Fisher information (QFI) [24]
Fð�Þ � Hð�Þ � Tr½%�L

2
��. In turn, the ultimate limit to

precision is given by the quantum Cramér-Rao bound
Varð�Þ � ½MHð�Þ��1. The family of states we are going

to deal with is a unitary one %� ¼ U�%0U
y
� ¼P

k�kj�kð�Þih�kð�Þj, where j�kð�Þi ¼ U�j�ki and U� ¼
expf�i�Gg describes a phase shift with the single-mode
number operator G ¼ aya as the generator. In this case the

SLD may be written as L� ¼ U�L0U
y
�, where L0 is inde-

pendent on �. The corresponding QFI does not depend on
the parameter �, and reads
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H ¼ Tr½%0L
2
0� ¼ 2

X

n�m

ð�n � �mÞ2
�n þ �m

jh�njGj�mij2: (1)

Phase diffusion for a continuous-variable system is de-
scribed by the master equation _% ¼ �L½aya�%, where
L½O�% ¼ 2O%Oy �OyO%� %OyO. The solution for

an initial state %ð0Þ is given by %ðtÞ ¼ N �ð%ð0ÞÞ ¼P
n;me

��2ðn�mÞ2%n;mð0Þjnihmj where � � �t, � is the noise

amplitude and %n;mð0Þ ¼ hnj%ð0Þjmi. The diagonal ele-

ments % are left unchanged and energy is conserved,
whereas the off-diagonal ones are progressively destroyed.

We assume that phase noise occurs between the appli-
cation of the unknown phase shift U� and the detection of

the signal, and address quantum estimation of a phase shift
applied to pure single-mode Gaussian states jc Gi ¼
Dð�ÞSðrÞj0i where SðrÞ ¼ expfðr=2Þða2 � ay2Þg is the
squeezing operator, Dð�Þ ¼ expf�ðay � aÞg the displace-
ment operator, being r, � 2 R. Our aim is to determine the
ultimate bound to precision for a generic pure Gaussian
probe and then look for the optimal one by maximizing the
QFI over the state parameters.

The mixed non-Gaussian state that is being measured is
given by

%�ðtÞ ¼ N �ðU�jc Gihc GjUy
�Þ

¼ U�N �ðjc Gihc GjÞUy
�;

where the second equality holds since the superoperator
L½aya� and the phase-shift operator U� commute. Our

estimation problem thus corresponds to the case of a
unitary family described above, with the input mixed state
given by N �ðjc Gihc GjÞ. In order to evaluate the
corresponding QFI one writes %� in its diagonal

form %� ¼ P
n�nj�nð�Þih�nð�Þj ¼ P

n�nU�j�nih�njUy
�,

where j�nð�Þi and j�ni are, respectively, the eigenvectors
of %� and of N �ðjc Gihc GjÞ corresponding to the eigen-

values �n, which are in fact left unchanged by the phase-
shift operation. By decomposing j�ni ¼ P

krnkjki in the
Fock basis and by substituting this into the eigen-
values equation N �ðjc Gihc GjÞj�ni ¼ �nj�ni we have

hnjc Gihc Gjlie��2ðn�kÞ2rqk ¼ �qrqn8n. Moreover, since

ayaj�ni ¼
P

kkrnke
ik�jki, we have that jh�mjayaj�nij2 ¼

jPkkrmkrnkj2. After evaluating the QFI using the above
formulas one sees that it depends only on the eigenvalues
�n and on the components of the eigenvectors rnk which,
being� a unitary parameter, do not depend on the parame-
ter itself. The explicit values of �n and rnk have been
obtained by performing numerical diagonalization.

The vanishing of the off-diagonal matrix elements is
governed by the product between �2 and ðn�mÞ2, i.e.,
the squared difference between the Fock indices. Besides,
for a pure Gaussian state, the presence of nonzero (non-
negligible) off-diagonal elements is somehow ruled by the
average photon number N ¼ hayai and thus we roughly

expect the QFI to somehow depend on the quantity
� ¼ N�. Pure Gaussian states may be conveniently
parametrized by the average photon number N and the
corresponding squeezing fraction �, in formula N ¼
sinh2rþ j�j2 and � ¼ sinh2r=N, and thus the QFI will
be a function of the three parameters N, �, and �.
We start our analysis by evaluating the QFI at fixed noise

�. We consider four values of the maximum energy
Nmax ¼ hayaimax ¼ f10; 15; 20; 30g (with 10 steps on in-
termediate energies N) and different values of the noise
parameter �. The values of � are chosen such that we can
find points corresponding to fixed values of �. The curves
are built by looking for the optimal pure Gaussian state,
i.e., maximizing the QFI as a function of the squeezing
fraction �, for any fixed value of the energy N and of the
noise parameter �.
The values of the optimal squeezing fraction �opt ¼

�optðN;�Þ and of the corresponding QFI HðN;�opt;�Þ
have been numerically evaluated and are reported in
Figs. 1 and 2, respectively. As we can see in Fig. 1, for a
low level noise the squeezing fraction is approaching one,
and thus the optimal probe state is the squeezed vacuum
state, as it happens in the noiseless case [12]. As far as the
noise � increases the squeezing fraction decreases as a
function of the average number of photons. This means that
for increasing values of the noise and of the energy, it is
more convenient to employ the energy in increasing the
coherent amplitude rather than squeezing of the probe. Let
us now focus on the behavior of the QFI HðN;�opt;�Þ. In
the left panel of Fig. 2, we report the typical behavior of the
QFI as a function of N and for different values of �. The
QFI increases by increasing the average photon number N,
and decreases with the noise parameter �. For the lowest
value of �, we also observe that the noiseless limit
HðN;� ¼ 1;� ¼ 0Þ ¼ 8ðN2 þ NÞ [12] is approached, at
least for N not too large.
As we have already mentioned above we expect the

product � ¼ N� to play a role in the estimation properties.
In fact, by exploring a large range of values for N and � a
scaling law emerges from numerical analysis, which may
be written as
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FIG. 1 (color online). Optimal squeezing fraction � as a func-
tion of the average photon numberN and for different values of�2.
(Left): from top to bottom �2 ¼ f2:0� 10�5; 2:0� 10�4; 2:0�
10�3; 2:0� 10�2g. (Right): from top to bottom �2 ¼ f1:125�
10�5; 1:125� 10�4; 1:125� 10�3; 1:125� 10�2g.
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HðN;�Þ ’ k2HðN=k; k�Þ: (2)

That is, HðN;�Þ ¼ N=��ð�Þ ¼ N2�ð�Þ=� ¼ ��ð�Þ=�2

where 0<�ð�Þ< 1 is a universal function independent
on� andN. The larger is � the more accurate is the scaling
law. The scaling is illustrated in the right panel of Fig. 2
where we report the quantity� ln�ð�Þ as a function of ln�
(points) together with a two-parameter fit (black curve) of
the form �ð�Þ / ��b expð�aln2�Þ, that provides a good
representation of data. Using the above results, the quan-
tum Cramèr-Rao bound for the precision of an optimal

estimator of the phase shift may be written as Varð�Þ *
�

�ð�ÞN ¼ �
�ð�ÞN2 . For small values of � the quantity ��ð�Þ is

of order of unity and thus Heisenberg limit Varð�Þ � N�2

in precision may be achieved [27]. We also found that
another scaling law, though less accurate, holds for the
optimal squeezing fraction

�optðN;�Þ ’ �optðN=k; k�Þ: (3)

Though based on a physical and mathematical justification,
we cannot expect these scaling laws to be exact due to the
non-Gaussianity of the state. However, they give a useful
and practical receipt to compare and predict phase-
estimation performances in different regimes of energy
and noise. In the left panel of Fig. 3 we show the behavior
of the quantum Fisher information at fixed average photon
number as a function of �. We notice that the HðN;�Þ
decreases exponentially with the phase noise and that
higher values of N correspond to higher values of H. We
have also evaluated the behavior of the QFI for some two-
mode entangled signals as entangled coherent and NOON
states and found that the QFI, which is initially smaller
than for optimized Gaussian states, remains smaller for any
value of the noise parameter; i.e., these classes of two-
mode signals do not offer large robustness.

In the noiseless case (� ¼ 0) homodyne detection
on squeezed vacuum states is optimal [12]; its Fisher
information F is equal to the QFI, HðNÞ ¼ 8ðN2 þ NÞ.

The question thus arises of whether or not this result also
holds in the presence of phase diffusion. Our numerical
findings show that this is true for a very small amount of
noise, i.e., � � 1, whereas for increasing � the ratio F=H
moves away from unity quite quickly. On the other hand,
one can see that for high values of �, basically when
coherent states are the optimal probe states maxi-
mizing the QFI, homodyne detection of the quadrature
X ¼ ðaþ ayÞ=2 is again nearly optimal; i.e., its Fisher
information again approaches the value of the QFI eval-
uated in same conditions. In the right panel of Fig. 3 we
plot the ratio between the Fisher information of homodyne
detection and the corresponding QFI: by increasing
the noise � the ratio increases towards optimality
(F=H ¼ 1). This may be understood looking at the behav-
ior of quadrature fluctuations �X2

� ¼ hX2
�i � hX�i2 since

the smaller is �X2
� for a certain quadrature X�, the more

precise is the estimation of the phase shift through this
quadrature. In Fig. 4, we report a contour plot of log�X2

� as

a function of the squeezing fraction of the input state � and
the quadrature phase � for different values of � and of the
overall energy N. We see that for low noise, i.e., � � 1,
minimum fluctuations are obtained for the quadrature
� ¼ 	=2 and for a squeezed vacuum state (� ¼ 1),
whereas after a certain energy-dependent threshold level
of noise �	 � �	ðNÞ, we have a jump and the minimum
fluctuations are achieved by measuring the X quadrature
(� ¼ 0) on coherent probes (� ¼ 0). This behavior is
different compared to the behavior we have obtained for
the QFI; see Fig. 1. There, for intermediate values of�, the
optimal squeezing fraction decreases monotonically from
� ¼ 1 to � ¼ 0, whereas here we have only the extreme
values. This exactly corresponds to the result discussed
above: homodyne detection, as far as we tune accordingly
the measured quadrature, is optimal for very low noise with
squeezed vacuum probes (� ¼ 0), and for large noise with
coherent probes (� ¼ 1), while for intermediate values of
� homodyne detection is far from optimality. Overall,
we have that homodyne detection provides nearly optimal
phase estimation for either very small or large phase
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FIG. 3 (color online). (Left): Log-log plot of the QFI for
optimized pure input Gaussian states as a function of the noise
parameter � for different values of the average photon number.
From bottom to top: N ¼ f2; 5; 10g. (Right): Ratio between the
FI of homodyne detection on coherent states and the correspond-
ing QFI, as a function of the number of photons of the
probe states and for different values of �. From bottom to top:
�2 ¼ f0:5; 1:0; 1:5; 2:0; 5g.
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FIG. 2 (color online). Left panel: QFI of optimized pure input
Gaussian states as a function of the average photon number N
and for different values of the noise parameter �; from top to
bottom �2 ¼ f5:0� 10�6; 5:0� 10�5; 5:0� 10�4g. The black
dotted line is the QFI for the noiseless case HðN;� ¼ 1;� ¼
0Þ ¼ 8ðN2 þ NÞ. Right panel: (points) � ln�ð�Þ as a function of
ln�, � � N�, with N � 30 and 10�3 � � � 1. The black curve
is a best fit with functional form �ð�Þ / ��b expð�aln2�Þ.
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diffusion, whereas it is still an open problem to find a
feasible measurement attaining the ultimate precision for
a generic value of the phase-diffusion noise parameter �.

In conclusion, we have attacked the problem of finding
the optimal way to estimate a phase shift in the presence of
phase diffusion and we have obtained the ultimate quantum
limits to precision for phase-shifted Gaussian states. By an
extensive numerical analysis we have obtained approxi-
mate scaling laws for both the quantum Fisher information
and the optimal squeezing fraction in terms of the overall
total energy and the amount of noise. We also found that
homodyne detection is a nearly optimal detection scheme
for very small or large noise. Our results go beyond the
traditional analysis of the quantum phase measurement
problem and may be relevant for the development of
phase-shift keyed optical communication schemes [28].

M.G.G. acknowledges the U.K. EPSRC for financial
support.
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Darker regions correspond to smaller �X2
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