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Systems consisting of identical bosons with a large scattering length satisfy universal relations

determined by 2-body physics that are similar to those for fermions with two spin states. They require

the momentum distribution to have a large-momentum 1=k4 tail and the radio-frequency transition rate to

have a high-frequency 1=!3=2 tail, both of which are proportional to the 2-body contact. Identical bosons

also satisfy additional universal relations that are determined by 3-body physics and involve the 3-body

contact, which measures the probability of 3 particles being very close together. The coefficients of the

3-body contact in the 1=k5 tail of the momentum distribution and in the 1=!2 tail of the radio-frequency

transition rate are log-periodic functions of k and ! that depend on the Efimov parameter.
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Strongly interacting systems present a challenging
problem in theoretical physics. Some of the simplest of
such systems consist of particles with short-range inter-
actions and large scattering lengths. They arise in almost
all branches of physics, including atomic, condensed
matter, high energy, and nuclear physics. Ultracold
trapped atoms with large scattering lengths are particu-
larly pristine examples of such systems. In addition to the
exquisite probes that are available in atomic physics, the
ability to control the scattering length by using Feshbach
resonances makes this dimension of the system accessible
experimentally.

The simplest many-body systems of particles that inter-
act through a large scattering length consist of fermions
with two spin states. In the past decade, such systems have
been the subject of intensive investigations, both theoreti-
cal and experimental, using ultracold trapped atoms [1]. A
powerful tool for studying these systems is universal rela-
tions that are determined by 2-body physics but hold for
any state of the system [2]. These relations involve the
contact, an extensive property of the system that measures
the probability for a pair of particles in the two spin states
to be very close together. The first such relations were
derived by Shina Tan [3]. Universal relations were sub-
sequently derived for radio-frequency spectroscopy [4–6],
photoassociation [7], structure factors [8], and correlation
functions related to the viscocity [9]. An exciting recent
development is the experimental confirmation of some of
the universal relations [10].

In this Letter, we present universal relations for identical
bosons with large scattering length. Like those for fermi-
ons with two spin states, these new universal relations
involve the 2-body contact. They also involve the 3-body
contact, an extensive property of the system that measures
the probability for triples of identical bosons to be very
close together.

For identical bosons in the zero-range limit, there are
two interaction parameters: the large scattering length a
and an Efimov parameter �� that is defined below [11].
Observables can depend only log periodically on �� with

discrete scaling factor e�=s0 � 22:7, where s0 � 1:006 24
is the solution to a transcendental equation. In the unitary
limit a ! �1, there are infinitely many Efimov trimers
with an accumulation point at the 3-atom threshold. The
parameter �� can be defined by the trimer spectrum near

the threshold in the unitary limit: �ðe�2�=s0Þn@2�2�=m,
where n is an integer.
The 2-body contact C2 and the 3-body contact C3 for a

state with energy E can be defined operationally in terms of
derivatives of the energy�
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For a many-body state at nonzero temperature, the deriva-
tives should be evaluated at fixed entropy. The normaliza-
tion of C2 in Eq. (1a) has been chosen so that the tail of the
momentum distribution at large wavenumber k (given
below in Eq. (2)) is C2=k

4. The coefficient on the right
side of Eq. (1a) then differs by a factor of 1=2 from that for
fermions with two spin states. The normalization of C3 in
Eq. (1b) has been chosen so that the 3-body contacts for the

Efimov trimers in the unitary limit are ðe�2�=s0Þn�2�.
Werner and Castin have expressed the derivative of E in
Eq. (1b) in terms of the 3-body Schrödinger wave function
at small hyperradius [12].
The importance of the contacts C2 and C3 is that there

are other properties of the system that depend linearly on
these quantities with universal coefficients that are deter-
mined by few-body physics. One of these universal
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relations gives the tail of the momentum distribution at
large wave vector k. We normalize the distribution nðkÞ
so that

R
d3knðkÞ=ð2�Þ3 is the total number of atoms. We

will show below that the tail of nðkÞ can be expressed as

nðkÞ ! 1

k4
C2 þ FðkÞ

k5
C3; (2)

where FðkÞ is a universal log-periodic function
FðkÞ ¼ A sin½2s0 lnðk=��Þ þ 2��: (3)

The numerical constants are A ¼ 89:2626 and � ¼
�0:669 064. The dependence on the state enters only
through the contacts C2 and C3. Their coefficients can be
determined by matching the tail of the momentum distri-
bution for any convenient state. Werner and Castin have
calculated C2 and FðkÞC3 for an Efimov trimer in the
unitary limit a ! �1 [12]. The 2-body contact for the
trimer with binding momentum �� is C2 ¼ 53:0972��. By
our definition in Eq. (1b), the 3-body contact is C3 ¼ �2�.
We determined A and � by matching the precise results of
Ref. [12]. A connection between the 1=k5 tail in Eq. (2) and
the derivative of the energy in Eq. (1b) was conjectured in
Ref. [12].

Another universal relation for identical bosons is an
Energy Relation that expresses the energy of a system in
terms of nðkÞ, C2, and C3. The total energy E is the sum of
the kinetic energy T, the interaction energy U, and the
energy V associated with an external trapping potential.
The kinetic energy can be expressed as an integral over
nðkÞ. Because of the k�4 tail in Eq. (2), the integral is
linearly ultraviolet divergent. If the k�4 tail were sub-
tracted, the integral would be ultraviolet finite, but it would
still depend log periodically on the ultraviolet momentum
cutoff because of the k�5 tail. The linear and log-periodic
dependence on the ultraviolet cutoff are both cancelled by
U. The energy relation, which is derived below, expresses
the sum T þU in a form that is insensitive to the ultravio-
let cutoff

T þU ¼
Z d3k

ð2�Þ3
@
2k2

2m

�
nðkÞ � C2

k4
� �ðk� k0ÞFðkÞC3

k5

�

þ @
2

8�ma
C2 þ ½Fðe�=4s0k0Þ þ f0�@2

8�2s0m
C3; (4)

where f0 ¼ �8:424 27. The lower limit k > k0 in the k�5

subtraction term avoids an ambiguity in the value of the
integral over the infrared region. The dependence on the
arbitrary wave number k0 is cancelled by the remaining C3

term, whose coefficient depends explicitly on k0. The
universal constant f0 in Eq. (4) was determined by match-
ing an expression for the energy of an Efimov trimer in the
unitary limit derived by Werner and Castin [12].

Tan’s Energy Relation for fermions with two spin states
is similar to Eq. (4) except that there are no terms propor-
tional to C3 [3]. Combescot, Alzetto, and Leyronas pro-
posed that such a relation should also apply to identical

bosons [13]. Werner and Castin demonstrated that such a
relation does not hold for an Efimov trimer in the unitary
limit [12]. Our universal relation in Eq. (4) demonstrates
that it fails for any state for which the 3-body contact C3 is
nonzero.
Another universal relation is the virial theorem for

identical bosons trapped in the harmonic potential
VðrÞ ¼ 1

2m!2r2, which was derived by Werner [14]:

T þU� V ¼ � @
2

16�ma
C2 � @

2

m
C3: (5)

This can be derived by using dimensional analysis, which
implies that the differential operator 2!@=@!� a@=@aþ
��@=@�� is equal to 2 when acting on the total energy E ¼
T þUþ V. The Feynman-Hellmann theorem and the
definitions in Eqs. (1) imply that the three partial deriva-
tives are proportional to V, C2, and C3, respectively.
One of the most important probes of ultracold atoms is

radio-frequency (rf) spectroscopy, in which an rf signal is
used to transfer atoms to a different spin state. In the case
of fermions with two spin states, there are universal rela-
tions that provide sum rules for the rf transition rate [4] and
control its high-frequency tail [5,6]. In the case of identical
bosons, the universal relations for rf spectroscopy also
involve the 3-body contact. The high-frequency tail of
the rf transition rate is

�ð!Þ ! �2

�
@
1=2

4�m1=2!3=2
C2 þGrfð!Þ@

2m!2
C3

�
; (6)

where � is the Rabi frequency associated with the tran-
sition. The transition rate is normalized so that it satisfies
the sum rule

R
d!�ð!Þ ¼ ��2N, where N is the number

of identical bosons. The log-periodic function Grfð!Þ is
calculated below

Grfð!Þ ¼ B1 þ B2 sin½s0 lnðm!=@�2�Þ þ 2�rf�; (7)

where B1 ¼ 9:23, B2 ¼ �13:6, and �rf ¼ 1:33.
Quantum field theory is a particularly powerful formal-

ism for deriving universal relations [15]. The universal
zero-range limit for identical bosons can be described by
a quantum field theory with atom field c . The Hamiltonian
density consists of the kinetic term for c and the interac-
tion term

H int ¼ g2
4m

dydþ g3
36m

tyt; (8)

where d ¼ c c and t ¼ c c c are local composite opera-
tors. We set @ ¼ 1 for simplicity. To obtain scattering
length a and Efimov parameter ��, the bare coupling
constants g2 and g3 must be tuned as functions of the
ultraviolet momentum cutoff � [16]. If we use a sharp
cutoff on the momenta of virtual particles, the bare cou-
pling constants must be chosen to be
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g2 ¼ 8�=½1=a� 2�=��; (9a)

g3 ¼ �9g22ðH þ J=a�Þ=�2; (9b)

H ¼ h0ðC� s0SÞ=ðCþ s0SÞ; (9c)

J ¼ ½j0 þ j1ð2SCÞ þ j2ðC2 � S2Þ�=ðCþ s0SÞ2; (9d)

where C ¼ cos½s0 lnð�=��Þ� and S ¼ sin½s0 lnð�=��Þ�. In
the renormalization prescription for g3 in Eq. (9b), H must
be a log-periodic function of �. The analytic approxima-
tion for H derived in Ref. [16] is Eq. (9c) with h0 ¼ 1. We
find that to within our numerical accuracy of about 10�3,H
is given by this analytic expression multiplied by the
numerical constant h0 ¼ 0:879. The renormalization scale
�� introduced by this prescription differs from �� by a
multiplicative factor that is only known numerically:
s0 lnð��=��Þ ¼ 0:971 mod � [11]. The function J in
Eq. (9b) is not essential for renormalization, but it is
needed to derive the energy relation in Eq. (4).

Using the operational definition of C2 and C3 in Eqs. (1)
together with the Feynman-Hellman theorem, we can iden-
tify the 2-body and 3-body contact densities in the quantum
field theory

C2 ¼ g22
4
hdydi � g32

2�2

�
H þ J

�
þ J

2a�

�
htyti; (10a)

C3 ¼ � g22
8�2

�
H0 þ J0

a�

�
htyti; (10b)

whereH0 and J0 are the derivatives ofH and J with respect
to lnð�=��Þ. The contacts C2 and C3 are obtained by
integrating these densities over all space. We have used
the identity ða@=@aÞg2 ¼ g22=8�a as well as the expres-
sion for g3 in Eq. (9b). The condition that C2 and C3 have
finite limits as � ! 1 implies that the matrix elements
hdydi and htyti scale as �2 and �4, respectively. Thus the
htyti term in Eq. (10a) and the J0 term in Eq. (10b) can be
omitted unless they are multiplied by a factor of �.

To derive the energy relation in Eq. (4), we express the
interaction energy U ¼ R

d3RhH inti in terms of the con-
tacts defined by Eqs. (10):

U ¼ 1=a� 2�=�

8�m
C2 � 2ðH þ 2J=�Þ

mH0 C3: (11)

The coefficient of C2 scales as � as � ! 1, while the
coefficient of C3 is a log-period function of �. The sub-
traction terms proportional to C2 and C3 in the momentum
integral on the right side of Eq. (4) can be evaluated
explicitly in terms of the ultraviolet cutoff �. After sub-
tracting these terms from U, we find that the dependence
on the ultraviolet cutoff � cancels. The subtracted expres-
sion for U reduces to the last two terms proportional to C2

and C3 on the right side of Eq. (4). This proves the Energy
Relation and determines the constants A, �, and f0 in
terms of the coefficients h0, j0, j1, and j2.

The tail of the momentum distribution in Eq. (2) can also
be derived by using the short-distance operator product

expansion (OPE) [15]. The momentum distribution
at wavevector k can be expressed in the quantum field
theory as

nðkÞ ¼
Z

d3R
Z

d3re�ik�r
�
c y

�
R� 1

2
r

�
c

�
Rþ 1

2
r

��
:

(12)

The coefficients in the OPE for c y and c at equal times
can be determined by matching matrix elements between
asymptotic few-body states [15]. Alternatively, they can be
determined by matching Green functions in the few-body
sector. The simplest choice of Green functions for the
matching are those that are one-particle-irreducible (1PI)
with respect to the atom field c and the diatom field
d ¼ c c . The resulting OPE at large wavevector k can
be expressed as

Z
d3re�ik�rc y

�
R� 1

2
r

�
c

�
Rþ 1

2
r

�

¼ 1

k4
g22
4
dydðRÞ � FðkÞ

k5
g22H

0

8�2
tytðRÞ þ . . . ; (13)

where FðkÞ is the log-periodic function in Eq. (3) and the
additional terms are all suppressed by at least k�6. The
Wilson coefficient of dyd was determined analytically by
matching the diatom Green function. The Wilson coeffi-
cient of tyt was subsequently detemined by matching the
atomþ diatom Green function. This Green function can
be expressed as a sum of loop diagrams involving the
connected atomþ diatom Green function, which can be
calculated by solving the Skorniakov–ter-Martyrosian
integral equation numerically. Inserting the OPE in
Eq. (13) into the expression for the momentum distribution
nðkÞ in Eq. (12), we obtain the result for the tail of the
momentum distribution in Eq. (2). Our direct calculation
gives constants A and � that agree to within a few percent
with the precise results given after Eq. (3).
In a quantum field theory, rf transitions of an atom to a

different spin state can be represented by an operator c y
2 c ,

where c y
2 creates an atom in the second spin state. The rf

transition rate can be expressed as

�ð!Þ ¼ �2Imi
Z

dteið!þi�Þt Z d3R
Z

d3r

�
�
Tc yc 2

�
Rþ 1

2
r; t

�
c y

2 c

�
R� 1

2
r; 0

��
: (14)

We assume for simplicity that the scattering length for the
second spin state and the pair scattering length for the first
and second spin states are negligible compared to a. We
can therefore take c 2 to be a noninteracting field. The rf
transition rate at large ! can be determined by using the

short-time operator product expansion for c yc 2 and c y
2 c

[6]. The leading terms in the OPE at large ! can be
expressed as
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Z
dtei!t

Z
d3rc yc 2

�
Rþ 1

2
r; t

�
c y

2 c

�
R� 1

2
r; 0

�

¼ i

!
c yc ðRÞ þ i½ð�m!Þ1=2 � a�1�

4�m!2

g22
4
dydðRÞ

þ iFrfð!Þ
m!2

g22H
0

8�2
tytðRÞ þ . . . ; (15)

where Frfð!Þ is a dimensionless function and the addi-

tional terms are all suppressed by at least !�5=2. The
Wilson coefficients for c yc and dyd were determined
analytically by matching the atom and diatom Green func-
tions, respectively. The Wilson coefficient of tyt was sub-
sequently determined by matching the atomþ diatom
Green function. The function Frfð!Þ in Eq. (15) has the
form

Frfð!Þ ¼ D0 þD1 lnðð�m!Þ1=2=�Þ
þD2sin

2½s0 lnðð�m!Þ1=2=��Þþ�rf�; (16)

where � is the ultraviolet momentum cutoff. Note that
Frfð!Þ is logarithmically ultraviolet divergent. The numeri-
cal constants in Eq. (16) are D0 ¼ 0:670, D1 ¼ �2:94,
D2 ¼ 1:16, and �rf ¼ 1:33. To obtain the high-frequency
tail in the rf transition rate,we insert theOPE inEq. (15) into
the expression for �ð!Þ in Eq. (14) and take the imaginary
part. Terms that are analytic functions of!, such as 1=! and
1=!2, do not contribute to the imaginary part. The leading
terms at large ! are given by Eq. (6), where Grfð!Þ ¼
2 ImFrfð!þ i�Þ. Using our result for Frfð!Þ in Eq. (16),
we obtain the result for Grfð!Þ in Eq. (7).

There are universal relations involving the 3-body con-
tact for any system in which the Efimov effect arises in the
3-body problem. Another such system consists of fermions
with three spin states, which we label 1, 2, and 3. In the
zero-range limit, the interactions are described by three
large pair scattering lengths a12, a13, and a23 and an
Efimov parameter ��. The discrete scaling factor has the

same value e�=s0 � 22:7 as for identical bosons. There are
2-body contactsC12,C13, andC23 associated with each pair
of spin states and a 3-body contact C123. The tail of the
number distribution n1ðkÞ for spin state 1 is given by
Eq. (2) with C2 and C3 replaced by C12 þ C13 and C123.
An operational definition of C12 is given by Eq. (1a) with a
and C2 replaced by a12 and 2C12. An operational definition
of C123 is given by Eq. (1b) with C3 replaced by C123. It is
straightforward to derive the analogs of the Energy
Relation in Eq. (4) and the universal relation for the rf
transition rate in Eq. (6).

Many-body systems consisting of identical bosonic
atoms or of fermonic atoms with three or more spin states
are unstable due to recombination into deeply-bound
dimers. The rates for these loss processes scale as a4 for
large a, which makes it difficult to test universal relations

for global equilibrium properties of the system, such as the
virial theorem in Eq. (5). However, universal relations that
govern the short-time behavior of the system, such as the
tails of the momentum distribution in Eq. (2) and the tail of
the rf transition rate in Eq. (6), can be tested experimentally
by using short-time probes of ultracold atoms, such as
those that have already been applied to fermions with
two spin states [10]. These universal relations involve
log-periodic functions, so they provide a new probe of
Efimov physics in ultracold atoms.
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