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A measurement of the Lamb shift in muonic hydrogen yields a charge radius of the proton that is

smaller than the CODATAvalue by about 5 standard deviations. We explore the possibility that new scalar,

pseudoscalar, vector, and tensor flavor-conserving nonuniversal interactions may be responsible for the

discrepancy. We consider exotic particles that, among leptons, couple preferentially to muons and mediate

an attractive nucleon-muon interaction. We find that the many constraints from low energy data disfavor

new spin-0, spin-1, and spin-2 particles as an explanation.

DOI: 10.1103/PhysRevLett.106.153001 PACS numbers: 31.30.jr, 14.80.�j

Lamb shift.—The success of quantum electrodynamics
(QED) is apparent in the explanation of the Lamb shift [1]
which is the observation that the 2S1=2 state of hydrogen is
higher than the 2P1=2 state by about 1 GHz [2]. Precision

measurements in atomic spectra have tested bound-state
QED to the extent that the charge distribution of the proton
needs to be taken into account [3]. The root-mean-square
charge radius of the proton compiled by CODATA from the
spectroscopy of atomic hydrogen and electron-proton scat-
tering is [4]

hr2pi1=2 ¼ 0:8768� 0:0069 fm; (1)

provided there are no new long-range e-p interactions [5].
It has been a long-held goal to measure the corresponding
Lamb shift in muonic hydrogen which is even more sensi-
tive to the structure of the proton due to its smaller Bohr
radius ð�m�Þ�1 (where �� 1=137 is the electromagnetic

fine structure constant and m� ’ 105 MeV). Recently, the

2PF¼2
3=2 ! 2SF¼1

1=2 Lamb shift in muonic hydrogen was mea-

sured to be [6]

�~E � Eð2PF¼2
3=2 Þ � Eð2SF¼1

1=2 Þ
¼ 206:2949� 0:0032 meV; (2)

while the predicted value is [7,8]

�~E ¼ 209:9779ð49Þ � 5:2262hr2pi þ 0:0347hr2pi3=2; (3)

where radii are in femtometers and energy in meV and the
number in parentheses indicates the 1� uncertainty of the
last two decimal places of the given number. (Note that�~E
is defined to be positive.) Equations (2) and (3) yield the
order of magnitude more precise result [6]

hr2pi1=2 ¼ 0:841 84� 0:000 67 fm; (4)

which is smaller than the CODATA value by about 5�. A
partial resolution of the discrepancy may be found in a
correlation between hr2pi and the r3p-dependent third

Zemach moment (since they contribute to the Lamb shift
with opposite signs) and perhaps unreliable extractions of
these from electron-proton scattering data [9]. Never-
theless, a 4� difference remains. The possibility that the
4% difference is a hint of a new gauge interaction with a
natural scale �m� has been entertained in Ref. [10].

In this Letter, we postulate the existence of a new inter-
action between muons and nucleons and study its nature,
bearing in mind the many experimental constraints. The
interactionmust be attractive since�~Emeasured in muonic
hydrogen is larger than expected, signaling that the 2S1=2
state is subject to a stronger attraction than electromagnetic.
Scalar and spin-2 boson exchanges produce an attractive

potential, giving positive contributions to �~E. Pseudo-
scalar boson exchange is a derivative interaction involving
the spins and velocities of the lepton and the nucleus,
which becomes insignificant in the nonrelativistic limit
and irrelevant to the Lamb shift. A boson with both scalar
and pseudoscalar couplings violates CP conservation.
Such a scenario faces strong constraints from electric
dipole moment measurements of leptons and nucleons
and is disfavored [11]. Vector boson exchange (like photon
exchange) can produce an attractive potential if the quan-
tum numbers associated with the lepton and the nucleus are
opposite in sign. Then Lamb shift phenomenology is like
that of scalar exchange. Axial-vector exchange couples the
spins of the lepton and the nucleus in the nonrelativistic
limit [with an effective potential ���ð�� � �pÞe�m�r=r

[12]] and affects the hyperfine structure (but not the Lamb
shift) so that the correction to the hyperfine splitting be-
tween the 2PF¼2

3=2 and 2SF¼1
1=2 levels for m� � �m� is

��
�mr

20

1þ10½m�=ð�mrÞ�2
½1þðm�=�mrÞ�4 , in the notation defined below.
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However, since the axial-vector current is not conserved,
the propagator gives a very singular contribution for m� &

�m�, which is unphysical. Absent a well-defined model,

we do not consider the axial-vector case any further.
Suppose the interaction between fermions f and � is

given by CS;V;T
f

�ff�, where S, V, and T denote scalar,

vector, and tensor �, respectively, and f can be a muon
� or a nucleon n; we assume isospin is conserved.
Throughout, we take the couplings C to be real and posi-
tive. In the nonrelativistic limit, the muon-nucleon inter-
action is given by the Yukawa-type potential

�VðrÞ ¼ ���

e�m�r

r
; (5)

where �� ¼ CS;V;T
� CS;V;T

n =ð4�Þ and m� is the mass of the

particle �. Physical systems in which tensor interactions
(by which we mean spin-2 exchange) are governed by a
Yukawa potential allow the identification CT

f � CS
f. This

will be valid for all our constraints except those that involve
the anomalous magnetic moment of the muon a� � ðg� �
2Þ=2. The correction to the muonic Lamb shift is [7,13]

�ð�~EÞ ¼ ��m�

m�

�mr

2ð1þ m�

�mr
Þ4 ; (6)

where mr is the reduced mass of the muon-proton system,
and its use is numerically important as mr is smaller than
m� by more than 10%. The green shaded region in Fig. 1

shows the 95% C.L. region that accommodates the differ-
ence between Eqs. (1) and (4). We do not consider m� >

10 GeV since the required �� becomes larger than 20�, in

the nonperturbative regime.
Upsilon decay.—For scalar � in the mass range

2m� � 9:3 GeV, the nonobservance of radiative decays

of the �ð2SÞ and �ð3SÞ resonances � ! ��, � !
�þ�� strongly constrains the�� � coupling [14], which
we expect to be no smaller than CS

n; for a Higgs-like �, the
coupling is naturally Oðmb=mnÞ � CS

n, while for a univer-
sal interaction, it should beOðCS

nÞ. We conservatively take
the �� � coupling to be CS

n. In obvious notation [15],

BFð� ! ��Þ
BFð� ! �þ��Þ ¼ ðCS

nÞ2
4��

�
1� m2

�

m2
�

�
: (7)

Under our assumption that the branching fraction of
� ! �þ�� is unity, the 90% C.L. upper limit on CS

n range
is ð0:94–9:4Þ � 10�3 [14], where the lower end of the range
corresponds to smaller m�. The values of ��=� needed to

explain the muonic Lamb shift constrain CS
� to lie above

Oð1Þ, Oð10Þ, and Oð100Þ for m� � 2m�, 1 GeV, and

9 GeV, respectively, couplings which are too large.
A vector � can mediate leptonic decays of spin-1 quar-

konia. Since the only lepton that � couples to is the muon,
one expects nonuniversality in leptonic decays. For �ð1SÞ
decays, R�� � ���=��� ¼ 1:005� 0:013� 0:022 [16],

whereas the standard model (SM) expectation is 0.992
[17]. The inclusion of � modifies the SM value of R�� by

a factor��
1� ��

�Qb

�
� ðm�=m�Þ2

�
2
�
1� ðm�=m�Þ2

��2
; (8)

where theþ (�) sign corresponds to destructive (construc-
tive) interference and Qb is the electric charge of the b
quark. For m� & 1 GeV, a conservative 95% C.L. (one-

sided) upper bound on ��=� (assuming the SM and

� contributions destructively interfere) is 8:8� 10�3. In
the range 1 GeV & m� <m�, the upper bound becomes

even more stringent, falling monotonically with m�. The

mass of a vector � is restricted to be less than about
230 MeV in order to explain the muonic Lamb shift.
Neutron scattering.—Very precise neutron scattering ex-

periments on heavy nuclei in the keV regime have been
performed to study the electric polarizability of the neutron.
The goal is to measure interference effects between the
nuclear potential and the r�4 potential produced by electric
polarizability. One can then see that a Yukawa potential

	AðCS;V;T
n Þ2e�m�r=ð4�rÞ may also be probed by such ex-

periments; theminus and plus signs apply to scalar or tensor
and vector interactions, respectively. Stringent bounds are
obtainable because the p-wave amplitude due to the short-
range strong interaction depends linearly on energy and
differs markedly from that due to the new longer-range
interaction. A n� 208Pb scattering experiment [18] in the
neutron energy range 1–26 keV measured the differential
cross section (under the assumption that the scattering
amplitude can be expanded in s and p waves) to be

d�=d� ¼ �0ð1þ!E cos	Þ=ð4�Þ; (9)

with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0=4�

p ’ 10 fm and ! ¼ ð1:91 � 0:42Þ �
10�3 keV�1. The measured values are in line with

Tensor
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FIG. 1 (color online). The 95% C.L. range of ��=� required to
reproduce the muonic Lamb shift is indicated by the green
shaded region. The black solid, red dashed, and blue dot-dashed
lines are the upper limits for vector, scalar, and spin-2 particles,
respectively, from a combination of n� 208Pb scattering data
and the anomalous magnetic moment of the muon. The black
dotted curve is the upper bound obtained from atomic x-ray
transitions. All bounds are at the 95% C.L.
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expectations so that the Yukawa potential contribution
ought to be subdominant. Denoting the strong interaction
contribution to ! by !s and the contribution of the new
interaction by �!, clearly, ! ¼ !s þ�! with [19]

�! ¼ 	 16

m4
�

ðCS;V;T
n Þ2
4�

Am2
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0=4�
p ; (10)

in the Born approximation (not valid for m� & 0:1 MeV),

mn is the neutron mass, and A is the atomic mass number.
For scalar or tensor exchange, it is possible that a cancella-
tion between !s and �! produces the experimental result.
However, this cannot be the case for a vector �.
A conservative 95% C.L. (one-sided) upper limit can be
obtained by requiring that �! 
 2:6� 10�3 keV, i.e.,

CV
n 
 ðm�=206Þ2; (11)

with m� in MeV. It is the shaded region of Fig. 2.

While reliable bounds for a scalar or tensor � are not
extractable from the differential cross section, the total
cross section measured between 10 eV and 10 keV
[20,21] may be employed with confidence. The energy
dependence of the n� 208Pb cross section for neutron
energies below 10 keV can be parameterized by

�ðkÞ ¼ �ð0Þ þ �2k
2 þOðk4Þ; (12)

where k ¼ 2:1968� 10�4
ffiffiffiffi
E

p
A=ðAþ 1Þ is the wave vector

of the incoming neutron (with k in fm�1 and E in eV). The
cross section in the limit of vanishing momentum transfer
�ð0Þ is directly related to the scattering length, and �2

gives the effective range of the potential. The OðkÞ con-
tribution to�ðkÞ arises from the electric field of the nuclear
charge distribution and is negligible. The measured values
�ð0Þ ¼ 12:40� 0:02 b and �2 ¼ �448� 3 b fm2 give a

95% C.L. bound on CS;T
n [21] that is almost identical to

Eq. (11) in the mass range of interest (and is not shown
separately in Fig. 2) but without the ambiguity from the
cancellation mentioned above.

Muon anomalous magnetic moment.—We now consider
the independent constraint on C� from a�. In fact, since

the experimental value of a� is above the SM expectation

by more than 3 standard deviations, �a� � a
exp
� � ath� ¼

ð29� 9Þ � 10�10 [22], the new interaction may explain
this difference. From Ref. [23],

�a� ¼ ðCS;V
� Þ2
8�2

Z 1

0

2x2 � 
x3

x2 þ ðm2
�=m

2
�Þð1� xÞdx; (13)

where 
 ¼ 1 for a scalar and 
 ¼ 2 for a vector. For a
tensor interaction, we trivially modify the result of
Ref. [24]. In the limit m� � m�,

CS
� ¼ 4�ð�a�=3Þ1=2 & 4:8� 10�4; (14)

CV
� ¼ 4�ð�a�=2Þ1=2 & 5:9� 10�4; (15)

CT
� ¼ 4�ð3�a�=20Þ1=2 & 3:2� 10�4; (16)

where the one-sided upper bounds are at the 95% C.L.
From Fig. 2, it is evident that Eqs. (14)–(16) apply for
m� & 10 MeV.

The bound in Eq. (11) can be combined with those in
Eqs. (14)–(16) to give the following 95% C.L. constraints
for m� & 10 MeV:

��=� & ðm�=2847Þ2 scalar; (17)

��=� & ðm�=2573Þ2 vector; (18)

��=� & ðm�=3477Þ2 tensor; (19)

with m� in MeV. A similar (numerical) procedure can be

applied for the entire range ofm� to obtain the upper bounds

shown in Fig. 1. We see that a vector � with mass between
25 (with �� ’ 10�4�) and 210MeV (with �� � 10�2�) is

a viable candidate. While a scalar � with mass between 70
and 210 MeV [with �� � ð10�3 � 10�2Þ�] is marginally

allowed, a spin-2 � is excluded.
Muonic atom transitions.—Measurements of the muonic

3D5=2-2P3=2 x-ray transition in 24Mg and 28Si atoms di-

rectly constrain �� for scalar, vector, and tensor particles

[25]. For the Yukawa form of Eq. (5) with the coupling
enhanced by a factor of A, the shift in the difference in
energy levels from the QED expectation is [25]

�E
E

¼ 2��A

5�Z
½9fð2Þ � 4fð3Þ�; (20)

where fðjÞ ¼ ½1þ jm�=ð2�Zm�Þ��2j, Z is the atomic

number, and j is the principle quantum number of the
muonic state. The measured value obtained by averaging
the results for 24Mg and 28Si, �E=E ¼ ð0:2� 3:1Þ � 10�6

[25], gives the 95% C.L. bound (dotted curve) in Fig. 1. No
additional area of the relevant parameter space is excluded
by this constraint.

S

V

T

0.1 0.5 1.0 5.0 10.0 50.0 100.0

10 4

10 3

m MeV

C
,C

n

FIG. 2 (color online). The curves are 95% C.L. upper bounds
on the muonic couplings CS

�, C
V
�, and CT

� from �a�. The green

shading marks the values of the nucleon coupling CS;V;T
n ex-

cluded by n� 208Pb scattering at the 95% C.L.
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J=c decay.—For m� < 2m�, the decay of scalar

� ! �þ�� is kinematically forbidden so that a constraint
from the nonobservance of the decay J=c ! ��, with �
invisible [26], may be employed to exclude the marginally
allowed region with 70 MeV<m� < 210 MeV; prelimi-

nary data also exist for the decay �ð3SÞ ! �� [27]. A
trivial modification of Eq. (7) applies to J=c decay. The
90% C.L. upper limit on BFðJ=c ! ��Þ is �4:5� 10�6

[26], which when combined with BFðJ=c ! �þ��Þ ¼
ð5:93� 0:06Þ � 10�2 [28] gives CS

n < 0:029. Then,
the muonic Lamb shift dictates that CS

� be larger than

3:4� 10�3, which is excluded at the 95% C.L. by a�;

see Fig. 2. Thus, scalars are also disfavored.
Pion decay.—The 90% C.L. experimental upper limit on

the decay �0 ! ��, where � is a vector particle, is
ð3:3–1:9Þ � 10�5 for m� ranging from 0 to 120 MeV

[29]. Equivalently, CV
n < 4:5� 10�4ð1�m2

�=m
2
�Þ�3=2

[30], and the corresponding values of CV
� required to ex-

plain the muonic Lamb shift are excluded by a�. This

leaves m� between 120 and 230 MeV.

Eta decay.—For vector�, the 90%C.L. experimental up-
per limit on invisible decays, BFð�!��Þ=BFð�!��Þ<
1:65�10�3 [31], translates into CV

n & 0:05 [32]. The cor-
respondingCV

� for 120 MeV<m� <m�=2� 274 MeV is

excluded by a�, so that vector � is ruled out.

Conclusions.—We have found that new spin-0, spin-1,
or spin-2 particles that mediate flavor-conserving nonun-
iversal spin-independent interactions are excluded by sev-
eral low energy constraints as an explanation of the proton
radius anomaly. We assumed that, among leptons, the new
particles couple only to the muon so as to avoid the large
number of constraints involving the interaction of the
electron with exotica. We also supposed that the coupling
of the new particle to nucleons represents the minimal
hadronic coupling and employed it to mesons.

There are ways to relax some of the bounds at the
expense of introducing complication. For example, since
the contributions of scalars and pseudoscalars to a� are

opposite in sign, allowing both a scalar boson and a pseu-
doscalar boson with appropriately tuned couplings can lead
to a cancellation that permits a rather large muonic cou-
pling. Then, although the hadronic couplings are highly
restricted, the muonic Lamb shift can be accommodated.
Another possibility is that the new interaction violates
isospin or CP, so that additional freedom is garnered.
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