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A second-order supersymmetric transformation is presented, for the two-channel Schrödinger equation

with equal thresholds. It adds a Breit-Wigner term to the mixing parameter, without modifying the

eigenphase shifts, and modifies the potential matrix analytically. The iteration of a few such trans-

formations allows a precise fit of realistic mixing parameters in terms of a Padé expansion of both the

scattering matrix and the effective-range function. The method is applied to build an exactly solvable

potential for the neutron-proton 3S1-
3D1 case.
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In quantum scattering theory, the fundamental inverse
problem consists in deducing the interaction potential be-
tween two colliding particles from their experimental
elastic-scattering cross sections [1]. These cross sections
have first to be parametrized in terms of energy-dependent
partial-wave phase shifts or scattering matrices. For a
central interaction VðrÞ, the partial waves decouple and a
sequence of single-channel inverse problems have to be
solved. For more complicated interactions, like the tensor
interaction in nuclear physics, partial waves may be
coupled and matrix potentials have to be constructed
from coupled-channel scattering matrices.

A formal solution to these inverse problems can be
written in terms of integral equations [1]. In practical
applications, experimental data turn out to be precisely
parametrizable in terms of separable kernels for these
equations. These correspond to scattering matrices that
are rational functions of the wave number. The integral
equations can then be solved analytically and the corre-
sponding potentials are also expressed in a separable form.
This procedure applies to both the single- and coupled-
channel cases [2,3]. In the single-channel case, the same
potentials can be more efficiently constructed with the help
of supersymmetric quantum mechanics (SUSYQM) [4,5],
which directly relates the potentials to their scattering-
matrix poles. Moreover, a small number of poles is in
general sufficient to fit experimental data on the whole
elastic-scattering energy range; this is, in particular, the
case for the neutron-proton singlet (spin 0) channels [6,7],
that decouple because of the vanishing tensor interaction.

The present Letter aims at extending this very efficient
single-channel method to the two-channel case without
threshold difference, and at applying it to the neutron-
proton triplet (spin 1) coupled channels. This system was
studied in the framework of the integral-equation method
by Newton and Fulton [2], at low energy, and by Kohlhoff
and von Geramb [3], on the whole elastic-scattering range.
The present Letter subsumes these works, by separating the
effect of the coupling between channels in the inversion

procedure, by parametrizing the data with a minimal num-
ber of poles, and by deriving simple expressions for the
corresponding matrix potential.
We consider two channels with equal thresholds and

angular momenta l and lþ 2. The scattering matrix is
parametrized by the eigenphase shifts �1, �2 and the mix-
ing parameter �,

SðkÞ ¼ R½�ðkÞ�diagðe2i�1ðkÞ; e2i�2ðkÞÞRT½�ðkÞ�: (1)

Here, k is the (complex-valued in general) wave number,
corresponding to the center-of-mass energy E ¼ k2 in
reduced units, and R is an orthogonal matrix

Rð�Þ ¼ cos� sin�
� sin� cos�

� �
: (2)

We aim at building a symmetric interaction matrix V with
entries V11, V12, V22, by inversion of the scattering data �1,
�2, �. In Ref. [8], we show how to split this two-channel
inverse problem into two independent parts: (i) fitting the
eigenphase shifts independently for each channel, with
the standard single-channel method [5–7], and (ii) fitting
the mixing parameter, with a new type of eigenphase
preserving (EPP) transformation. In Ref. [8], such a trans-
formation is introduced but it is restricted to a mixing
parameter which is an odd function of the energy, as in
Ref. [2]. Here, we overcome this restriction, which allows
us to fit more realistic mixing parameters.
Let H0 ¼ �I2d

2=dr2 þ V0 be an initial 2� 2 matrix
Hamiltonian, where I2 is the identity matrix and the po-
tential V0ðrÞ is symmetric. With two successive SUSYQM
transformations, this Hamiltonian can be transformed into
another Hamiltonian H2, which has the same eigenphase
shifts asH0 but a different mixing parameter. Equivalently,
this can be achieved with a twofold EPP transformation
defined by the intertwining relation LH0 ¼ H2L, where L
is a second-order differential matrix operator, called trans-
formation operator, which maps solutions of both
Hamiltonians as �2ðk; rÞ ¼ L�0ðk; rÞ. Operator L and
its adjoint Ly obey the factorization properties
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LyL ¼ ðH0 � E1ÞðH0 � E�
1Þ, LLy¼ðH2�E1ÞðH2�E�

1Þ,
where E1¼k21¼ER1þ iEI1 and E�

1 ¼ ER1 � iEI1 are mu-
tually conjugate factorization constants. General properties
and different expressions for L can be found in Ref. [8].

The transformed potential reads

V2ðrÞ ¼ V0ðrÞ � 2W 0
2ðrÞ: (3)

The matrix W2 is expressed in terms of a complex matrix
U, made up of two vector solutions of the coupled-channel
Schrödinger equation, �U00 þ V0U ¼ E1U, as [8]

W2ðrÞ ¼ �EI1fIm½U0ðrÞU�1ðrÞ�g�1: (4)

Potential V2 is real, symmetric, and regular when U has a
first column regular for r ! 0 and behaves like

Uðr ! 1Þ ! e�ik1r �ieik1r

ie�ik1r eik1r

� �
: (5)

For this EPP transformation, the eigenphase shifts of the
transformed scattering matrix S2 coincide with the initial
ones: �c;2ðkÞ ¼ �c;0ðkÞ for channel c ¼ 1, 2. On the other

hand, the mixing parameter is modified as

�2ðkÞ ¼ �0ðkÞ þ arctan
EI1

ER1 � k2
; (6)

which corresponds to additional S-matrix poles in k2 ¼
ER1 � iEI1. In Ref. [8], this result was proved in the case of
purely imaginary poles, ER1 ¼ 0. We made this choice
because a mixing parameter should vanish at zero energy
(up to an unimportant integer multiple of �=2) for the
potential to be short ranged (except for the r�2 centrifugal
diagonal term). For ER1 � 0, all calculations of Ref. [8] are
actually valid but lead to a nonvanishing mixing parameter,
�2ð0Þ ¼ arctanðEI1=ER1Þ � �1, and to r�2 off-diagonal
terms in the potential. Here, we solve these problems by
applying an energy-independent rotation after the EPP
transformation: the S matrix S2 transforms into �S2 ¼
RTð�1ÞS2Rð�1Þ, which shifts the mixing parameter by a
constant value, ��2ðkÞ ¼ �2ðkÞ � �1, whence ��2ð0Þ ¼ 0.
Meanwhile, H2 transforms into �H2 ¼ RTð�1ÞH2Rð�1Þ,
which has no r�2 off-diagonal term.

Iterating P times such EPP transformations, with ener-
gies Ej ¼ ERj � iEIj, j ¼ 1; . . . ; P, one builds a chain of

Hamiltonians, H0 ! H2 ! . . . ! H2P. The final potential
V2P corresponds to the eigenphase equivalent S matrix

S2PðkÞ ¼ Rð ��2PÞdiagðe2i�1;0 ; e2i�2;0ÞRTð ��2PÞ; (7)

with ��2PðkÞ ¼ �2PðkÞ � �2Pð0Þ and

�2PðkÞ ¼ �0ðkÞ þ
XP
j¼1

arctan
EIj

ERj � k2
: (8)

As above, to get a vanishing zero-energy mixing para-
meter, we perform a compensation rotation of angle
��2Pð0Þ ¼ �P

P
j¼1 �j, with �j � arctanðEIj=ERjÞ,

j ¼ 1; . . . ; P, on both S2P and H2P.
The sum in parametrization (8) is flexible enough to fit

realistic mixing parameters, even with small values of P.

This can be explained with an effective-range expansion:
the elements of matrix (2) are analytical at the origin and
can be Taylor expanded as a function of the energy [9].
Consequently, tan� is well approximated by a Padé expan-
sion, which is exactly what our EPP transformations lead
to: for �0 ¼ 0, tan ��2P, with 2P arbitrary parameters, is the
most general Padé approximant of order ½P=P� in energy,
vanishing at the origin.
This is very analog to the single-channel SUSYQM

inversion [5–7], where Padé approximants also occur.
There, the one-channel S matrix is expanded in terms of
its poles i�m in the complex wave-number plane as [6,7]

SlðkÞ ¼ e2i�lðkÞ ¼ YMl

m¼1

i�m þ k

i�m � k
ðMl � 2lþ 1Þ; (9)

which corresponds to the single-channel phase shift

�lðkÞ ¼ �PMl

m¼1 arctanðk=�mÞ. The poles are generally

restricted to the imaginary axis, except for resonances,
and have to be chosen so that the effective-range function

Klðk2Þ ¼ k2lþ1 cot�lðkÞ ¼ ik2lþ1 SlðkÞ þ 1

SlðkÞ � 1
(10)

does not vanish at zero energy, which corresponds to a
finite scattering length. At higher orders, Kl is usually
expanded as a Taylor series, but this expansion often
breaks down at high energy. The S matrix (9), in contrast,

leads to a Padé approximant forKl, of order ½Ml

2 =
Ml

2 � l�1�
in energy for evenMl and of order ½Ml�1

2 =Ml�1
2 � l� for odd

Ml. Such approximants are valid at any energy and are able
to fit experimental phase shifts with high precision, even
for a limited order.
Expansion (9) also has the advantage that the corre-

sponding potential is known analytically [6],

Vl;Ml
ðrÞ ¼ lðlþ 1Þ

r2
� 2

d2

dr2
lnW½u1; . . . ; uMl

�; (11)

where W is a Wronskian determinant of functions umðrÞ.
These functions are solutions of the free radial Schrödinger

FIG. 1 (color online). Poles of the neutron-proton 3S1-
3D1

scattering matrix close to the origin (note the different scale
for the imaginary energy axis).
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equation, �u00m þ lðlþ 1Þr�2um ¼ Emum, at energies
Em ¼ ��2

m given by the S-matrix poles.
Combining this single-channel inversion technique with

the EPP transformations provides a complete coupled-
channel inversion scheme. First, experimental eigenphase
shifts are inverted separately for each channel, i.e., they are
fitted with Eq. (9) and the corresponding potential is con-
structed with Eq. (11). This leads to diagonal potential and
scattering matrices, which can then be used as a starting
point for EPP transformations. The factorization energies
of these transformations are chosen by fitting the experi-
mental mixing parameter with Eq. (8) and the correspond-
ing coupled-channel potential is finally constructed by
iterated application of Eq. (3), followed by a compensation
constant rotation. The final potential is thus directly built
from its scattering-matrix poles, which are either associ-
ated to the eigenchannels or to the coupling.

Let us now consider one of the most important coupled-
channel inverse problems, i.e., the inversion of the neutron-
proton 3S1-

3D1 scattering matrix. To test our method, we

use the scattering matrix of the Reid93 potential [10] as
input data. Using Eq. (9) with 5 terms for both the s and d
waves (Ms ¼ Md ¼ 5), we find the following ten factori-
zation constants sm ¼ 0:231 54, �0:451 46, 0.436 54,
1.6818, 2:3106 fm�1, dm ¼ �0:367 19, �0:544 20,
0.348 28, 0.717 66, 3:3758 fm�1, which fit the neutron-
proton 3S1 and 3D1 phase shifts, respectively. Note that

s1 ¼ 0:231 54 fm�1 is fixed to reproduce the deuteron
binding energy Bd ¼ 2:2245 MeV. The S-matrix poles
�s2m and �d2m closest to the origin are represented in the
complex energy plane in Fig. 1.

In Fig. 2, we compare the eigenphase shifts of the Reid93
potential and our fit. The corresponding potentials Vs;5 and

Vd;5 are determined by Eq. (11) with the following

sets of solutions: us;m ¼ expðsmrÞ, us;n ¼ sinhðsnrÞ, and
ud;m¼½3dmrcoshðdmrÞ�ð3þd2mr

2ÞsinhðdmrÞ�=r2, ud;n¼
e�dnr½1þ3=ðdnrÞþ3=ðdnrÞ2�, m ¼ 1, 2, n ¼ 3,4,5. After
extracting the centrifugal term from the second channel, we
plot these potentials in Fig. 3, as well as their asymptotic
behavior in logarithmic scale in Fig. 4. At large distances,
the one-pion-exchange (OPE) short-range behavior of the
Reid93 potential, with a pion mass ofm� � 0:684 fm�1, is
clearly seen. Both inversion potentials are also short ranged.
For the s-wave potential, this is surprising at first sight: in
general, for a SUSYQM inversion, the leading contribution
to the potential asymptotics comes from the pole i�m with
�m > 0 closest to the origin, and behaves like expð�2�mrÞ.
In the present case, this is the bound-state pole is1, which
lies closer to the origin than the OPE cut, and one would
expect the inversion potential to decrease slower than the
OPEpotential at large distances.We solve this problemhere
by exploiting the degree of freedom provided by the pres-
ence of a bound state: in our inversion technique, the bound-
state asymptotic normalization constant (ANC) can be
chosen arbitrarily without affecting neither the phase shift
nor the binding energy [11]. For a particular value of the
ANC, related to the residue of theS-matrix bound-state pole
[12], the expð�2s1rÞ potential tail vanishes; for our single-
channel S-matrix parametrization, and thus for potential

Vs;5, this ANC has the value As;5 ¼ 0:8854 fm�1=2,

which is very close to the value for the Reid93 potential,

As ¼ 0:8853 fm�1=2.
Despite this satisfactory short-range behavior, potentials

Vs;5 and Vd;5 differ from the Reid93 diagonal potentials:

Figs. 3 and 4 show that Vs;5 is more attractive, whereas

Vd;5 is more repulsive. This confirms that a coupling is

necessary to recover the original potential. We thus trans-
form the diagonal potential V0 ¼ diagðVs;5; Vd;5Þ into a

FIG. 2. Eigenphase shifts �3S
1
, �3D

1
and mixing parameter �1 of the 3S1-

3D1 channels for neutron-proton scattering.

FIG. 3. Reid93 potential and its inversion potentials for the neutron-proton 3S1-
3D1 channels.
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coupled one by using EPP transformations. The P complex
energies Ej are chosen to reproduce physical properties of

the Reid93 potential. For positive energies, we fit the
mixing parameter, while for the negative bound-state en-
ergy, we fit the ratio of ANCs for the d- and s-wave
components, � ¼ Ad=As, to its value for the Reid93 po-
tential, � ¼ 0:0251 [10]. These ANCs are related to
the residue of the two-channel scattering matrix at the
bound-state pole [13] and read As ¼ As;5 cos�ð�BdÞ,
Ad ¼ �As;5 sin�ð�BdÞ. Hence, one has to satisfy

tan�ð�BdÞ ¼ �0:0251. For the Reid93 potential, the mix-
ing parameter is not an odd function of the energy, which
confirms the need for the general EPP transformations
introduced above. A single transformation (P ¼ 1) pro-
vides two free parameters, ER1 and EI1; we fix them to
reproduce � and the slope of the mixing parameter at zero
energy, �0ð0Þ ¼ 0:297 MeV�1. The values of ER1, EI1

compatible with these constraints are given in Table I for
P ¼ 1. The mixing parameter ��2 is shown in Fig. 2 by dots.
It is seen that this model provides a good low-energy fit, in
the spirit of the Newton-Fulton potential [2]; however, the
present potential is much simpler and more general, as it
allows a mixing parameter which is not an odd function of
the energy.

Fitting the mixing parameter at higher energies requires
additional free parameters. Therefore, we iterate the EPP
transformations. In Table I, we list the positions of the
S-matrix poles for P ¼ 1, 2, 3 EPP transformations. The
corresponding mixing parameters are plotted in Fig. 2,
which shows a good improvement with increasing P.

The effective potentials are shown in Fig. 3. They still
display some differences with the Reid93 potential, due to
their different high-energy S matrix, but their low-energy
properties, asymptotic behavior (see Fig. 4) and deuteron
properties, converge well. In Fig. 1, we show that some of
the S-matrix poles are concentrated near E ¼ �m2

�=4 and
are nearly independent of P. These poles can be associated
with the OPE contribution to the np interaction.

In conclusion, we have presented in this Letter an opti-
mal coupled-channel inversion algorithm, combining
standard single-channel SUSYQM transformations with
coupled-channel EPP transformations that display the re-
markable feature of modifying the mixing parameter
without affecting the eigenphase shifts. The method is
developed for two channels with equal thresholds and we
plan to study its applicability to more general cases. In the
neutron-proton 3S1-

3D1 case, the method leads to a simple

potential, directly related to the position of its scattering-
matrix poles. This very efficient parametrization could also
be used in a phase-shift analysis of experimental data,
directly providing the corresponding potential.
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TABLE I. Real ERj and imaginary EIj parts of the P energies
Ej entering the EPP transformations (j ¼ 1; . . . ; P).

P, j 1,1 2,1 2,2 3,1 3,2 3,3

�ERjðfm�2Þ 0.1463 0.1430 2.191 0.1590 4.004 0

EIjð10�3 fm�2) 6.372 5.864 49.85 8.153 �3107 9443

FIG. 4. Asymptotic behavior of the Reid93 and inversion
potentials.
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