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We show that block entanglement entropies in one-dimensional systems close to a quantum critical

point can, in principle, be measured in terms of the population of low-lying energy levels following a

certain type of local quantum quench.
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Entanglement and its quantification through entangle-
ment entropy have become increasingly important tools in
the study of quantum many-body systems. The fact that the
entanglement entropy of a region of linear size ‘ in the
ground state of a system with short-range interactions in d
dimensions grows like ‘d�1 [1] (up to possible logarithms),
as compared with a typical state where it is extensive, both
explains the success of modern numerical methods and
informs their further development. Moreover, it gives a
basis-independent way of detecting quantum critical be-
havior and topological phases.

Briefly, the entanglement entropy is defined as follows:
Given a bipartition of the Hilbert space H ¼ H A �H B

(which usually corresponds to the degrees of freedom lying
in mutually exclusive regions A and B of d-dimensional
space), the reduced density matrix of (say) A is given by
�A ¼ TrH B

j0ih0j. The Rényi entropies are then given by

SðnÞA ¼ ð1� nÞ�1 logTrH A
�n
A. The von Neumann entropy

�TrH A
�A log�A is formally the limit as n ! 1. For differ-

ent n these encode the entanglement spectrum of �A: If we
make a Schmidt decomposition

j0i ¼ X
k

ckjkiAjkiB; (1)

then the nonzero eigenvalues of �A are given by c2k. On the
other hand, TrH A

�n
A ¼ P

kc
2n
k . If the state has low entan-

glement, then only a few eigenvalues are appreciable and
the entropies are small, while if the state is maximally
entangled, the entropies are of the order of the lesser of
the dimensions of H A and H B.

In exactly solvable models, and more generally for
systems at or near a quantum critical point, considerable
progress has been made in relating the behavior of the
entanglement entropy to other universal data of the under-
lying long-distance theory, typically a quantum field the-
ory [2]. In particular, for d ¼ 1, the coefficient of the
‘‘area’’ law (in this case the number of boundary points
between A and B) is predicted to diverge as log�, where �
is the correlation length, as the critical point is ap-
proached. At the critical point, the entropy of a finite
interval of length ‘ immersed in a much larger system

grows like log‘. When the low energy, long wavelength
physics is described by a conformal field theory (CFT),
the coefficient is given by the central charge, or conformal
anomaly number, c: The Rényi entropies behave as [3,4]

SðnÞA � ðc=6Þð1þ n�1Þ log‘. Many other predictions have

been made by now. For example, when A consists of two
disjoint intervals, the entropy encodes all the data of the
CFT, which is therefore recoverable solely from properties
of the ground state wave function [5,6]. These predictions,
in d ¼ 1 and higher, have been well verified in numerical
investigations, and indeed the low degree of entanglement
is partly responsible for the success of density matrix
renormalization group and tensor network methods [7].
However, it seems difficult to devise a method whereby

entanglement entropy in an extended system of the type
discussed above could be measured, even in principle, in a
real experiment, since it is intrinsically nonlocal. While
various methods have been proposed for measuring entan-
glement in systems with a finite dimensional Hilbert space
[8], their complexity increases with the system size. What
we have in mind is a conventional condensed matter ex-
periment whose difficulty does not in principle increase
with the system size. In some simple systems the entangle-
ment entropy can be indirectly recovered from an (in
principle) measurable correlation function [9,10] or the
distribution of suitably chosen observables [11], but this
connection is system-specific.
Various suggestions have been made as to how charge

[12,13] or number [14] fluctuations in the subsystem A,
either in space or in time, may provide a measurement of
entanglement entropy. However, the generality of these
observations has been questioned [15]. They are restricted
to systems with a conserved current, and it is difficult to see
how these ideas could measure entanglement of neutral
degrees of freedom or apply in cases when there is no such
conservation law. More seriously, the logarithmic behavior
which appears in these analyses can be traced to the fact
that, in one dimension, current-current correlators
hJðx1ÞJðx2Þi behave like jx1 � x2j�2 on separations much
smaller than the size of the subsystem (but larger than the
microscopic scale and similarly in the time domain), giving
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rise to logarithms on integration over x1 and x2. Although
the functional form of such logarithms turns out to be
identical to that of the entanglement entropy for simple
geometries, the analysis of Ref. [6] shows that, even in the
slightly more complicated case where A consists of two
disjoint intervals, the entanglement entropy has a form
which cannot be simply expressed as an integral over
correlation functions of local fields.

The proposal in Ref. [12] is an example of a local
quantum quench [16,17], whereby the Hamiltonian of a
quantum system is instantaneously changed H ! H0 in a
local way, so that the quantum state, which was the ground
state ofH, now evolves according toH0. In general, the real
time behavior after such a local quench is relatively simple
[17]: The additional energy near the quench site is radiated
away as the quasiparticles ofH0, moving semiclassically at
their group velocities vg. These also propagate changes in

entanglement through the system, which, in a critical 1d
system, therefore grow like logðvgtÞ.

In this Letter, we propose a different type of local
quantum quench which, in principle, directly measures
the Rényi entropies. We show that these are simply given
by the probability P0 ¼ jH0 h0j0iHj2 of finding the system in
the ground state of H0 after the quench. This quantity is
called the fidelity, and it has been used extensively in
characterizing quantum critical behavior (see, for example,
Ref. [18]), but it has largely been restricted to global, rather
than local, changes in the Hamiltonian. (See, however,
Ref. [19].) It may be objected that P0 is not directly
experimentally observable, even in a gapped system.
However, we also show that, in systems close to a quantum
critical point described by a quantum field theory with a
linear dispersion relation, the probability PðEÞ of finding
the system in a low-lying excited state of energy E is given
by P0 times a calculable factor. In principle, PðEÞ is
measurable if the system is coupled weakly in a known
fashion to other modes whose spectrum can be analyzed.
This then gives an indirect measurement of P0 and hence
the Rényi entropy. The analog of PðEÞ for global quenches
has been discussed in Refs. [20,21].

Let us define more precisely the local quench. In com-
puting Rényi entropies, it is convenient to imagine n copies
of the original system. We now suppose that these copies
can actually be manufactured, to a tolerance to be dis-
cussed later. Consider therefore n identical copies of the
system so that the full Hilbert space is H ¼ �n

j¼1H j.

Initially, they are decoupled so that the Hamiltonian is
H ¼ P

n
j¼1 Hj, and each system is in its ground state (as-

sumed unique), so the combined system is in its ground
state j0iH ¼ Q

jj0ij. Consider the same bipartite decom-

position of each H j ¼ H jA �H jB. All the H jA are

isomorphic. Let �n be the permutation operator (unitary
on H ) which maps H jA ! H ðjþ1ÞA (mod n) and acts as

the identity on all the H jB. (Such an operator for the case

n ¼ 2was introduced in Ref. [22] where it is called a SWAP

operator.) Then it is well known (see, e.g., Ref. [23] for the

case n ¼ 2) that, by using the decomposition (1) and the
orthonormality of the Schmidt states,

Hh0j�nj0iH ¼ X
k

c2nk ¼ TrH A
�n
A: (2)

On the other hand, if we define H0 ¼ ��1
n H�n, H

0 and H
are isospectral, and j0iH0 ¼ ��1

n j0iH is the ground state of
H0. Hence, by thinking of H ! H0 as a quantum quench,
the modulus squared of (2) is nothing but P0 ¼ jH0 h0j0iHj2.
The point about this elementary observation is that, when
H has only short-ranged interactions and A and B are
spatially disjoint regions, the difference between H and
H0 is restricted to the boundary between A and B. Thus
while the action of �n on states, expressed in a particular
basis, may be complicated (see, e.g., Fig. 1 of Ref. [22]), its
action on the combined Hamiltonian is simple. As an
example, consider two copies of a Heisenberg spin chain
with nearest neighbor interactions and Hamiltonian
J
P

l�l � �lþ1. Take A to be the set of sites with l � 0
and B those with l � 1. Then

H0 �H ¼ J�ð1Þ
0 � �ð2Þ

1 þ J�ð2Þ
0 � �ð1Þ

1 � J�ð1Þ
0 � �ð1Þ

1

� J�ð2Þ
0 � �ð2Þ

1 :

This is illustrated in Fig. 1. (For an odd number of such
twists, it is also necessary to twist the boundary conditions
at the same time. This has no effect in open systems or for
periodic boundary conditions in systems much larger than
the correlation length but is important for finite ungapped
systems with periodic boundary conditions.) Such twist
operators have been studied for integrable spin chains in
Ref. [24].
Note that, for an infinite system or one with periodic

boundary conditions, one of the chains can be parity re-
versed as in Fig. 2 (assuming the ground state j0i is
invariant under this reflection) to obtain a local quench
corresponding to the closing of a point contact coupling to
two external leads on either side. In a real experiment, of
course, it may be difficult to ensure that the new couplings
added in H0 are precisely the same as those deleted in H.
However, at least in a gapped system, the results should be
robust to such imperfections as long as they are on scales
smaller than the gap or the energy E of excited states.
The operators �n corresponding to a local modification

ofH at some point l in a one-dimensional system are called
twist operatorsT nðlÞ in the literature [25]. From the above,
we see that the Rényi entanglement entropy between the
left and right halves of such a system is given in terms of

FIG. 1. The action of a single twist operator on two one-
dimensional systems with short-range interactions.
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the ground state expectation value Hh0jT nð0Þj0iH.
Similarly, the Rényi entanglement entropy between an
interval of length ‘ ¼ jl1 � l2j and the rest of the system
is given by Hh0jT nðl1ÞT nðl2Þj0iH, and so on. In all cases,
these matrix elements may be viewed equivalently as the
fidelity following a quantum quench of H to H0 ¼Q

kT nðlkÞyHQ
kT nðlkÞ or, equivalently, the probability

P0 that the system is found in the ground state of H0
when its energy is measured.

In one-dimensional systems close to a critical point,
considerable effort has gone into analyzing the behavior
of correlators of these twist operators, especially for sys-
tems with dynamical scaling exponent z ¼ 1, which are
described in the scaling limit by a relativistic quantum field
theory and, at the critical point, by a CFT [2]. In these
cases, it follows from the early work of Ref. [3] thatT n has
scaling dimension xn ¼ ðc=12Þðn� 1=nÞ, where c is the
conformal anomaly number of the CFT. By scaling, this
means for a single twist in a system with a finite gap �, P0

scales as b0n�2xn as � ! 0. Similarly, for an interval of
length ‘ at the critical points, it behaves like bn‘

�2xn . The
constants bn and b0n are not universal, but their ratio is
expected to be, in units where v ¼ 1 [26].

However, measuring the total energy of a many-body
system to accuracy Oð1Þ is unfeasible even when the
spectrum is gapped. In fact, after such a local quench,
most of the excess energy goes into states whose energy
is of the order of the inverse cutoff or bandwidth. This can
be seen by studying the time dependence of the energy
density, given by the component T00ðx; tÞ of the energy
momentum tensor, following the action of a single
twist. This is given in the Schrödinger picture by

Hh0jT nð0ÞyeiHtT00ðxÞe�iHtT nð0Þj0iH. On the other hand,
in a CFT, we can write T00 ¼ T þ �T, and, in imaginary
time

Hh0jT nð0Þye�H�0TðxÞe�H�T nð0Þj0iH / ð�þ�0Þ2
ðxþ i�Þ2ðx� i�0Þ2 :

(3)

This follows from Eq. (11) of Ref. [4]. A similar result
holds for h �Ti. Continuing this result to � ¼ itþ � and �0 ¼
�itþ �, where � is a UV cutoff of the order of the lattice
spacing or inverse bandwidth, we see that, after the quench,

hT00ðx; tÞi / �2

½ðtþ xÞ2 þ �2�2 þ fx ! �xg

in units where v ¼ 1. The total energy
RhT00idx diverges

like ��1, and, in a CFT, it is concentrated in a region of
width Oð�Þ near the light cone. In a more general lattice
theory, we expect the energy to be carried off by quasipar-
ticles moving semiclassically with their appropriate group
velocities. Similar considerations apply to changes in the
entanglement entropy [17].
We now argue that, despite the fact that most of the

energy is radiated in this nonuniversal manner, the popu-
lation PðEÞ of the states with energies Emuch less than the
cutoff is universal and is directly related to the Rényi
entropy. This is because its Laplace transform is given by
correlation functions of twist operators in imaginary time:

Z
PðEÞe�E�dE ¼ Hh0je�ðH0�HÞ�j0iH

¼ Hh0j
�Y

k

Tnðlk; �Þy
��Y

k

Tnðlk; 0Þ
�
j0iH:

We now consider various simple cases of this.
Single twist in an infinite ungapped system.—At the

critical point the two-point function hT nð0;�ÞyT nð0;0Þi�
bn�

�2xn , where bn is the same constant appearing in
the result for the Rényi entropy of an interval of length ‘
(in units where v ¼ 1). In this case the spectrum of
H0 is continuous, and we see that PðEÞdE�
½bn=�ð2xnÞ�E2xn�1dE. Note that the probability of finding
the system in a state of energy <E approaches zero as
E ! 0. This is an example of an ‘‘orthogonality catastro-
phe’’ as was first observed in the x-ray edge singularity
[27]. As in that problem, the probability of occupation of
low-lying states obeys a universal power law [28].
Single twist in a gapped system.—When the theory is

gapped, the two-point function behaves asymptotically like
jhT nij2, giving a probability P0 � b0n�2xn that the system
is in the ground state. More interesting is the occupation of
low-lying states. In Ref. [26] it was shown thatT n couples
to multiparticle states in the continuum. As an example, the
coupling to 2-particle states with E> 2� gives

PðEÞ ¼ P0

X
k1;k2

Xn
i¼1

Xn
j¼1

jFijðk1; k2Þj2�ðE� Ek1 � Ek2Þ;

where Fij is a form factor coupling T n to a particle of

momentum k1 in copy i and of momentum k2 in copy j. For
integrable models these are calculable [26], and thus mea-
surement of PðEÞ gives direct access to P0 and therefore
the Rényi entropy.
Single twist in a finite ungapped system.—Suppose

the initial system has finite length L with open boun-
dary conditions. The form of the two-point function
hT nðx; �ÞyT nðx; 0Þi can be found by a conformal map-
ping to the upper half plane. As � ! 1 we find P0 ¼
bngn½ðL=�Þ sinð�x=LÞ��2xn , where x is the distance of
the twist from one end of the system and loggn gives the
boundary entropy. This agrees with the result in Ref. [4] for
the Rényi entropy. The coupling to the excited states can be

FIG. 2. A single twist is equivalent to the closing of a point
contact when n is even and the ground state is invariant under
reflection.
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found by using the methods described in Ref. [6]. The
leading corrections as � ! 1 come from two excitations
each of energy �xs=L (where xs is a boundary scaling
dimension) propagating in two different copies of the
available n. We then find that

PðE ¼ 2�xs=LÞ ¼ P0dnðxsÞ½ðL=�Þ sinð�x=LÞ�4xb ;
where dnðxsÞ is a known function of xs [6].

Multiple twists.—This is more complicated still, since
for p twists we need to know the 2p-point function of twist
fields. However, analytic results are available from the
CFT for various limiting cases. For example, take the
case p ¼ 2, that is, an interval A of length ‘ in an infinite
system. As discussed above, the probability P0 of finding
the system in its ground state gives the Rényi entropy. For
‘ � �, that is, energies E � ‘�1, the methods of Ref. [6]
show that the product of two twist operators can be written
as an infinite sum over all possible local scaling fields of
the CFT on each of the n copies. The leading correction
comes from when two of these have dimension x � 0 and
all the rest correspond to the identity. Thus we have

PðEÞdE ¼ P0

X
x

~dnðxÞð‘EÞ4x�1dEþ � � � ;

where ~dnðxÞ is once again known, the sum is over all the
bulk scaling dimensions, and the neglected terms, of order

ð‘EÞ2ðxiþxjþxkÞ, are also calculable and, for n > 2, encode
further CFT data. [For n ¼ 2 a closed form for PðEÞ is
available since the four-point function of twist operators is
related to the partition function of the CFT on a torus [6].]
For E 	 ‘�1 we find the result for single, independent
twists.

Although the purpose of this Letter has been to show
only that it is possible in principle to measure Rényi
entropies, it is interesting to consider whether this proposal
is at all practical. As mentioned earlier, imperfections in
the faithfulness of the copies or of the precise details of the
quench should be unimportant as long as they occur at
energy scales much less than the gap � or the energy E
above the ground state. In principle, PðEÞ can be measured
if the system couples weakly, in a known manner, to
other degrees of freedom whose energy distribution can
be spectrally analyzed. For example, if the excited states of
H0 can decay through a coupling to the electromagnetic
field, PðEÞ should be recoverable from the photon spec-
trum. In optical lattices, the energy E could be transferred
to kinetic energy of the atoms, whose spectrum could then
be analyzed after removal of the trap. In both cases, in
order to produce an observable spectrum, it would of
course be necessary to consider a small but finite density
of twists, produced continuously at a low rate. Under such
conditions, the above analysis shows that we should obtain
simple universal behavior, characteristic of independent
twists, for energies E larger than the mean density (in units
where v ¼ 1) but much smaller than the bandwidth.

Although we have restricted attention to the case of one
dimension, where twists are local, the analysis in principle
extends to higher dimensions. In particular, it can be seen
that the action of twist operators can change the topology
and so reveal the entanglement entropy of topological
phases. We have throughout assumed that the ground state
j0i is unique, and there are interesting consequences, even
in one dimension, when this is not the case.
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