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The change in energy of an ideal Fermi gas when a local one-body potential is inserted into the system,

or when the density is changed locally, are important quantities in condensed matter physics. We show that

they can be rigorously bounded from below by a universal constant times the value given by the

semiclassical approximation.
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A problem of long-standing interest in condensed matter
physics is to give an effective estimate of the minimum
change in kinetic energy, �T ð��Þ, of an infinitely ex-
tended ideal Fermi gas when the density is changed locally
by a fixed, specified amount ��ðrÞ; i.e., the density is
changed from a constant �0 to �ðrÞ ¼ �0 þ ��ðrÞ. Note
that ��ðrÞ can be positive or negative, as long as ��ðrÞ �
��0, hence the word ‘‘hole’’ in our title.

An equivalent problem is to calculate the minimum
change in total energy �EðVÞ of the Fermi gas when a
local, one-body potential VðrÞ, of either sign, is added to
the kinetic energy Hamiltonian, i.e.,�r2 ! �r2 þ VðrÞ,
where we use units such that @ ¼ 2m ¼ 1. This rigorous
equivalence, recalled in (1) and (2) below, is well known in
density-functional theory.

In this Letter we will give an effective answer to both
questions by proving rigorously for dimensionsD � 2 that
the well-known semiclassical approximations are, up to an
overall constant, a lower bound for the kinetic energy cost,
as well as for the energy shift caused by VðrÞ. In the
semiclassical approximation one associates one quantum
state with each box �p�r in phase space of volume 2�,
but this calculation is qualitatively wrong for D ¼ 1 be-
cause of a singularity at the Fermi surface related to the
Peierls instability.

Plainly, there cannot be an upper bound to �T ð��Þ
because we can always put the particles in high momentum
states while keeping �ðrÞ fixed. The interesting computa-
tional question is the lower bound, i.e., the minimum
required payment for a perturbation of �0.

The literature on �EðVÞ is mostly based on perturbation
theoretic ideas. Such calculations are valid in many im-
portant cases but they do not bring the physics to the
foreground as sharply as the semiclassical formula does.
It is, therefore, important, conceptually and computation-
ally, to be able to view the physically transparent semiclas-
sical formula as yielding a rigorous, nonperturbative
bound. The semiclassical formulas are strictly local in
position space, and hence additive over impurities, making

them useful for density-functional theory [1]. No multiple-
scattering calculation is needed here.
The two energy shifts, �Tð��Þ and �EðVÞ, are connected

via a Legendre transform as

�T ð��Þ ¼ sup
VðrÞ

�
�EðVÞ �

Z
R3

VðrÞ½�0 þ ��ðrÞ�d3r
�
; (1)

�EðVÞ ¼ inf
��ðrÞ

�
�T ð��Þ þ

Z
R3

VðrÞ½�0 þ ��ðrÞ�d3r
�
: (2)

If �0 � 0 then �ðrÞ ¼ ��ðrÞ � 0 and T ð�Þ ¼
�T ð��Þ. In this case we are just creating a pile of N
electrons with density �ðrÞ and with

R
R3 �ðrÞd3r ¼ N or,

equivalently, we are filling the negative energy states of a
potential V. The 3D semiclassical (also know as Thomas-
Fermi) energies are

Tscð�Þ ¼ ð3=5Þð6�2=qÞ2=3
Z
R3

�ðrÞ5=3d3r; (3)

EscðVÞ ¼ �ðq=15�2Þ
Z
R3

VðrÞ5=2� d3r; if �0 � 0; (4)

where y� � maxð0;�yÞ � 0 is the positive or negative
part of a number y, and q is the number of available spin
states per particle, which is 2 for unpolarized electrons.
When �0 > 0, the semiclassical quantities in 3D are

�Tscð��Þ ¼ Tscð�0 þ ��Þ �Tscð�0Þ ��
Z
R3

��ðrÞd3r

¼ 3

5

�
6�2

q

�
2=3 Z

R3

�
½�0 þ ��ðrÞ�5=3 � �5=3

0

� 5

3
�2=3
0 ��ðrÞ

�
d3r; (5)

�EscðVÞ ¼ EscðV ��Þ � Escð��Þ
¼ � q

15�2

Z
R3
f½VðrÞ ���5=2� ��5=2gd3r; (6)
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where � ¼ ð6�2�0=qÞ2=3 is the chemical potential at
density �0.

Main theorem.—Our main theorems in 3D are

�T ð��Þ � 0:1279�Tscð��Þ (7)

for the change in kinetic energy, and

0 � �EðVÞ � �0

Z
R3

VðrÞd3r

� 21:85

�
�EscðVÞ � �0

Z
R3

VðrÞd3r
�

(8)

for the change in energy when an arbitrary local potential
VðrÞ is inserted into the system. Similar results hold for all
D � 2. Our bound (8) quantifies the validity of first-order
perturbation theory, since �0

R
R3 VðrÞd3r is precisely the

first-order term. In (5) note the ð��Þ5=3 dependence for
large ��, as in (3), but ð��Þ2 for small ��.

A lower bound in the �0 � 0 case was provided by the
Lieb-Thirring inequality [2–5] for all D � 1. For D ¼ 3

T ð�Þ ¼ �T ð��Þ � 0:6724Tscð�Þ; when �0 � 0: (9)

It is widely believed that 0.6724 can be replaced by 1, and
there is continuing research in this direction. The inequal-
ity T ð�Þ � KT scð�Þ, as in (9), is equivalent to

E ðVÞ � K�3=2EscðVÞ; when �0 � 0: (10)

The inequality (9) was derived by first proving (10) and
then using the equivalence (1) and (2). Our attempt to
follow this route in the positive density case was not
successful. The situation changed when Rumin [6] found
a way to prove directly the kinetic energy bound (9). By
suitably modifying his method, we are now able to derive a
lower bound for �T ð��Þ, and consequently on �EðVÞ,
when �0 > 0.

Several papers, e.g., [7,8], deal with this problem from
different points of view. In almost all cases, it has been
approached from the side of computing the energy shift
with a given potential V. The idea of computing the shift
caused by a given change in density does not seem to have
been widely considered.

If one fixes the particle numberN in a very large box and
calculates the shift in energy caused by V, the answer
depends on the box shape and boundary conditions [7,9].
We are able to avoid these problems and go directly to the
thermodynamic limit by fixing the chemical potential �
and working in infinite space. Then we can look at the
unperturbed HamiltonianH0 ¼ �r2 �� or the perturbed
one HV ¼ �r2 ��þ VðrÞ and fill all the negative en-
ergy states, i.e., all states below the Fermi level. No box is
required in our approach; these Hamiltonians are defined
on the whole space R3. The individual energies are neces-
sarily infinite but the difference is finite, as we will explain.

To put this more precisely, we set �V , respectively �0,
equal to the projections onto the negative spectrum of HV

and H0. The change in energy is then

�EðVÞ ¼ TrðHV�V �H0�0Þ (11)

where Tr denotes the trace.
To define the related kinetic energy shift, we consider a

one-particle density matrix �ðr; r0Þ (suppressing spin in-
dices for simplicity) and compute

�T ð��Þ ¼ inf
�
TrH0ð���0Þ: (12)

On the right side, we take the infimum over all density
matrices �ðr; r0Þ whose diagonal is �ðr; rÞ ¼ �0 þ ��ðrÞ.
The Fermi statistics enters via the condition on �: it is
known [4] that the necessary and sufficient condition for a
one-body � to come from an N-body fermionic density
matrix is that 0 � � � 1, as an operator inequality. The
same condition is imposed in (12). Note that �T ð��Þ
includes the chemical potential � in its definition (since
H0 ¼ �r2 ��). With this choice, �T ð��Þ is always
positive, regardless of the sign of ��ðrÞ. Formally, the
reason for this is that�0 is the minimizer of TrH0� among
all one-body density matrices �.
Derivation of the lower bound (7).—To simplify the

notation, we shall assume that q ¼ 1 from now on. The
general case is analogous. Referring to Eq. (12), we con-
sider a density matrix �ðr; r0Þwhose density is �0 þ ��ðrÞ.
We have to study Q ¼ ���0, which we write as Q ¼
Qþþ þQ�� þQþ� þQ�þ, where Q�� ¼ �0Q�0,
Q�þ ¼ �0Qð1��0Þ, etc. In Fourier space this means

that dQ��ðp;qÞ¼�ðp2<�ÞQ̂ðp;qÞ�ðq2<�Þ, etc., with�
the Heaviside step function. The total change ��ðrÞ of the
density equals the sum of the densities of each of these
terms, e.g., �þþðrÞ ¼ Qþþðr; rÞ, and so on. Since 0���
1 in the sense of operators, we have Qþþ � 0 and��0 �
Q�� � 0, hence �þþðrÞ � 0 and ��0 � ���ðrÞ � 0.
However, �þ�ðrÞ ¼ ��þðrÞ has no sign a priori.
The kinetic energy of the diagonal terms Q�� can be

bounded using the method of [6]. The starting point is the
representation

Tr ðH0Q
þþÞ ¼ TrðjH0jQþþÞ ¼

Z 1

0
dETrðQþþ

E Þ

¼
Z
R3

d3r
Z 1

0
dE�þþ

E ðrÞ (13)

where Qþþ
E ¼ P�EQ

þþP�E, �þþ
E ðrÞ ¼ Qþþ

E ðr; rÞ, and
P�E is the spectral projection of jH0j ¼ j � r2 ��j
onto energies� E. By Schwarz’s inequality andQþþ � 1,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hc jQþþjc i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hc jP�EQ

þþP�Ejc i
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hc jP�EQ

þþP�Ejc i
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hc jP�EQ

þþP�Ejc i
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hc jP�Ejc i

q
for any c . By taking c to be a � function we obtainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þþðrÞp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þþ
E ðrÞ

q
þ ffiffiffiffiffiffiffiffiffi

rðEÞp
, where rðEÞ is the (spatial)

constant density of P�E, which is easily found to be
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rðEÞ ¼ 1

6�2
½ð�þ EÞ3=2 � ð�� EÞ3=2þ �:

When we insert this bound on �þþ
E ðrÞ into (13) we obtain

Tr ðH0Q
þþÞ �

Z
R3

F½�þþðrÞ�d3r (14)

with

FðyÞ ¼
Z 1

0
dE

� ffiffiffiffiffiffi
jyj

q
�

ffiffiffiffiffiffiffiffiffi
rðEÞ

p �
2

þ
: (15)

The function FðyÞ is convex [because y � ð ffiffiffiffiffiffijyjp � CÞ2þ is
convex] and behaves like the semiclassical counterpart in

(5) for small and large y. The kinetic energy of Q��
satisfies the same inequality as (14). Using the convexity
of F we obtain the bound

Tr ðH0QÞ � 2
Z
R3

F

�
�þþðrÞ þ ���ðrÞ

2

�
d3r: (16)

For a different bound we consider the off-diagonal terms
�þ� ¼ ��þ. Calculating in momentum space and using
Schwarz’s inequality

ð2�Þ3=2
Z

j�þ�ðrÞj2d3r ¼ ð2�Þ3=2
Z

�þ�ðrÞQþ�ðr; rÞd3r ¼
Z
p2��

d3p
Z
q2��

d3q d�þ�ðp� qÞQ̂ðp;qÞ

�
�Z

p2��
d3p

Z
q2��

d3q
jd�þ�ðp� qÞj2

jp2 ��j1=2jq2 ��j1=2
�
1=2
�Z

p2��
d3p

Z
q2��

d3q jQ̂ðp;qÞj2jp2 ��j1=2jq2 ��j1=2
�
1=2

:

(17)

The first square root factor on the right side can be rewrit-
ten as �Z

R3
�ðkÞjd�þ�ðkÞj2d3k

�
1=2

; (18)

where

�ðkÞ ¼
Z

p2��

jp�kj2��

d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� p2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp� kj2 ��
p : (19)

Our last task is to bound�ðkÞ from above. As a function
of k, �ðkÞ can be shown to be monotonically decreasing.
Thus, it attains its maximum at k ¼ 0where it has the value
�ð0Þ¼�2 ffiffiffiffi

�
p

. We deduce from (17) that

8�ffiffiffiffi
�

p
Z
R3

j�þ�ðrÞj2d3r

�
Z
p2��

d3p
Z
q2��

d3qjQ̂ðp;qÞj2

� jp2 ��j1=2jq2 ��j1=2:

(20)

To understand the right side, we recall that Q ¼ ���0

where 0 � � � 1. Hence

Q2 ¼ ð���0Þ2 ¼ �2 � ��0 ��0�þ�0

� �� ��0 ��0�þ�0 ¼ Qþþ �Q��

and, therefore,

TrH0Q � TrjH0jQ2 � 2� ½right side of ð20Þ�:
We deduce that

TrH0Q � 16�ffiffiffiffi
�

p
Z
R3

j�þ�ðrÞj2d3r: (21)

So far we have found two lower bounds (16) and (21) for
the shift in kinetic energy �T ð��Þ ¼ inf TrH0Q, which

we average with coefficients t and 1� t. Thus, �T ð��Þ is
bounded below byZ

R3

�
2tF

�
�þþðrÞ þ ���ðrÞ

2

�
þ 16�ffiffiffiffi

�
p ð1� tÞj�þ�ðrÞj2

�
d3r;

(22)

where F is in (15). We must now give a lower bound to the
right side of (22) in terms of the total change in density
��ðrÞ ¼ �þþðrÞ þ ���ðrÞ þ 2��þðrÞ. These three quan-
tities are not known separately but they do satisfy the
constraints that �þþðrÞ þ ���ðrÞ � ��0 and ��ðrÞ �
��0. We then look for a 0 � t � 1 such that

2tF
x

2

� �
þ 16�ffiffiffiffi

�
p ð1� tÞy2 � �

3

5

6�2

q

 !
2=3�

ð�0 þ xþ 2yÞ5=3

��5=3
0 � 5

3
�2=3
0 ðxþ 2yÞ

�
holds for all xþ 2y � ��0 and all x � ��0, and with � as
large as possible. Solving this problem numerically leads
to t ¼ 0:7267 and � ¼ 0:127 97. This completes the deri-
vation of our first main result (7).
Using (2) we obtain the bound on the shift in energy

�EðVÞ � ��Escð��1VÞ. Finally, we can use the fact that
�EscðVÞ � �0

R
R3 VðrÞd3r is a monotonically decreasing

function of �. This implies (23), which implies (8):

�Esc

1

�
V

� �
� �0

�

Z
R3

VðrÞd3r

� ��5=2

�
�EscðVÞ � �0

Z
R3

VðrÞd3r
�
: (23)

Extension to 2D.—Our method can be generalized to 2D
(indeed to any dimension except 1D). The result is

�T 2Dð��Þ � 0:044 93�T 2D
sc ð��Þ (24)
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for the change in kinetic energy, and

0 � �E2DðVÞ � �0

Z
R2

VðrÞd2r

� 22:25

�
�E2D

sc ðVÞ � �0

Z
R2

VðrÞd2r
�

(25)

for the change in energy when a potential VðrÞ is
inserted into the system. The 2D semiclassical functi-
ons are T 2D

sc ð�Þ ¼ �T 2D
sc ð�Þ ¼ ð2�=qÞRR2 �ðrÞ2d2r and

�E2D
sc ðVÞ ¼ �q=ð8�ÞRR2f½VðrÞ ���2� ��2gd2r with

� ¼ 4��0=q.
Peierls Instability in 1D.—In a 1D free Fermi gas, a

bound like (8) cannot hold, in general. When a potential
VðrÞ is inserted into the system at positive density �0, the
corresponding variation of the semiclassical energy is

�E1D
sc ðVÞ ¼ � 2q

3�

Z 1

�1
f½VðrÞ ���3=2� ��3=2gdr

with � ¼ ð��0=qÞ2. For small VðrÞ, this gives

�E1D
sc ðVÞ � �0

Z 1

�1
VðrÞdr � � q2

4�2�0

Z 1

�1
VðrÞ2dr:

On the other hand, second-order perturbation theory [10]
predicts that the true shift �E1DðVÞ, for small V, is

�E1DðVÞ � �0

Z 1

�1
VðrÞdr

� � q2

2�

Z
k2��

dk
Z
‘2��

d‘
jV̂ðk� ‘Þj2
‘2 � k2

¼ � q2

4�

Z 1

�1
dk

jV̂ðkÞj2
jkj log

2
ffiffiffiffi
�

p þ jkj
j2 ffiffiffiffi

�
p � jkjj :

(26)

The logarithm diverges at jkj ¼ 2
ffiffiffiffi
�

p
; hence, the second-

order term can be made arbitrarily large while keepingR
VðrÞ2dr fixed. Thus, there cannot be any lower bound

involving �E1D
sc ðVÞ. This divergence in 1D is well known,

and is related to the Peierls instability [10]. In higher
dimensions, the second-order approximation is bounded
[this follows from our bound (8)], but it is known to have an
infinite derivative at jkj ¼ 2

ffiffiffiffi
�

p
, a fact that is sometimes

called the Migdal-Kohn anomaly [11].
Extension to positive temperature.—The change in free

energy at temperature T ¼ ðkB�Þ�1 and chemical potential
� is

�F ðVÞ ¼ ���1Tr½lnð1þ e��HV Þ � lnð1þ e��H0Þ�
with HV and H0 as before. Using the fact that
lnð1þ e��EÞ ¼ �2

R1
E ð1þ e��Þ�2e��ð�� EÞd�, we find

�F ðVÞ ¼ �
Z
R

e��

ð1þ e��Þ2 �E
�þ�ðVÞd�

with �E�þ�ðVÞ ¼ �Tr½ðHV � �Þ� � ðH0 � �Þ��. This
formula expresses the positive temperature energy shift

as a mixture of zero temperature energy shifts with
different chemical potentials. In fact, �E�þ�ðVÞ is nothing
but the energy shift estimated before with chemical poten-
tial �þ � instead of �. Thus (8) leads to

0��F ðVÞ��T

Z
R3
VðrÞd3r

��ð21:85Þ q�

15�2

Z
R
d�

Z
R3
d3rð1þe��Þ�2e��

�
�
½VðrÞ�����5=2� �ð�þ�Þ5=2þ þ5

2
ð�þ�Þ3=2þ VðrÞ

�
with density �T ¼ q

ð2�Þ3
R
R3ð1þ e�ðp2��ÞÞ�1d3p. Similar

results hold for all D � 2. This is a bound
on the change in free energy after insertion of a potential
V; the corresponding version in terms of the density
change �� can be obtained via a Legendre transform,
as in (1).
Extension to periodic background potentials.—Our

method also works here. The result depends on knowing
two things: the density of states close to the Fermi level �
and the nonhomogeneous background density �0ðrÞ for
this �. With these quantities in hand, the calculation
follows along the same lines as the one given here. There
are various possible energy-band scenarios and, for lack of
space, we defer the details to a forthcoming paper.
Conclusion.—We show rigorously that the energy shift

of a Fermi gas, caused either by a local density perturbation
or by a local potential, is described, qualitatively, by a
semiclassical calculation.
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