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Despite qualitative differences in their underlying physics, both hard and soft glassy materials exhibit

almost identical linear rheological behaviors. We show that these nearly universal properties emerge

naturally in a shear-transformation-zone theory of amorphous plasticity, extended to include a broad

distribution of internal thermal-activation barriers. The principal features of this barrier-height distribution

are predicted by nonequilibrium, effective-temperature thermodynamics. Our theoretical loss modulus

G00ð!Þ has a peak at the � relaxation rate, and a power law decay of the form !�� for higher frequencies,

in quantitative agreement with experimental data.
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Qualitatively different kinds of amorphous materials—
e.g., structural, metallic, and colloidal glasses—exhibit
remarkable similarities in their linear rheological proper-
ties [1,2] despite their enormous range of internal
dynamics and intrinsic time scales. In particular, their
frequency-dependent loss moduli G00ð!Þ all have peaks
that rise near a viscous relaxation rate. For systems near
their glass temperatures, these peaks are orders of magni-
tude broader than can be explained by single-mode
analyses. We show here that this near universality of the
frequency-dependent linear response functions emerges
naturally in the shear-transformation-zone (STZ) theory
of amorphous plasticity [3–6], generalized to include a
distribution of internal barrier heights of the kind
found experimentally in 1980 by Argon and Kuo [7]. We
also show that the principal features of this barrier-height
distribution are predicted by nonequilibrium, effective-
temperature thermodynamics [8]. Our analysis differs
from both soft glassy rheology (SGR) [9] and from
mode-coupling theory [10]. In particular, we start with a
kinematic formulation that is fundamentally different
from that used in SGR, and we insist that the elementary
shear transformations be driven by ordinary thermal
fluctuations.

The STZ theory assumes that the degrees of freedom of a
glassy material can be separated into two weakly coupled
subsystems—the slow configurational degrees of freedom,
i.e., the inherent structures, and the fast kinetic-vibrational
degrees of freedom. While the latter are generally in equi-
librium with the thermal reservoir, the former are charac-
terized by an effective temperature that may depart from
the reservoir temperature [8]. A fundamental premise of
STZ theory is that irreversible shear deformations occur
only at rare, localized, two-state, flow defects in the con-
figurational subsystem. In flowing states, these STZs ap-
pear and disappear as the driven system makes transitions
between its inherent structures. In jammed states, the STZs
are configurationally frozen, but they still are able to make

transitions between their internal orientations in response
to ordinary thermal fluctuations or applied stresses.
For spatially homogeneous systems, we may start by

assuming for simplicity that the STZs are oriented only in
the � directions relative to the shear stress s. We then
consider STZs characterized by an internal, thermal-
activation barrier �. Let the number of� STZs with given
� be N�ð�Þ, and let the total number of (coarse-grained)
molecular sites be N. The master equation for N�ð�Þ is [6]

�0 _N�ð�Þ ¼ Rð�sC;�ÞN�ð�Þ � Rð�sC;�ÞN�ð�Þ
þ �ð�Þ½Neqð�Þ=2� N�ð�Þ�: (1)

Here, �0 is a fundamental time scale, for example, a
vibration period for molecular glasses or a Brownian dif-
fusion time for colloidal suspensions. Rð�sC;�Þ=�0 is the
rate per STZ for thermally activated transitions between�
orientations, and sC is the partial stress acting on the
configurational subsystem. In contrast to SGR, we assume
that sC is a coarse-grained stress, determined by external
forcing, and that the molecular-level stresses are accounted
for implicitly by the two-state dynamics. The total stress,
s ¼ sC þ �K � _�, includes (when appropriate) a partial
stress acting on the kinetic-vibrational subsystem. For
colloidal suspensions, this additional stress is a kinetic
viscosity; _� denotes the total shear rate and �K� denotes
a convolution over time.
The two terms in square brackets on the right-hand side

of Eq. (1) are the rates at which STZs are created and
annihilated by spontaneous thermal fluctuations.
Mechanically generated noise, as used in [5,6], is second
order in the applied stress and therefore can be neglected in
this linear theory. Neqð�Þ is the value approached by

2N�ð�Þ in steady state. The sum over all possible �’s is
determined by a Boltzmann-like factor expð�eZ=�Þ ac-
cording to

P
�Neqð�Þ ¼ N expð�eZ=�Þ. � is the effective

disorder temperature in energy units, and eZ is a typical
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STZ formation energy. �ð�Þ is the thermal noise strength,
and � ¼ kBT is the bath temperature in units of energy.

The contribution to the rate of deformation coming from
STZ transitions with barrier height � is

�0D
plð�Þ ¼ v0

V
½RðsC;�ÞN�ð�Þ � Rð�sC;�ÞNþð�Þ�

¼ 	0�ð�ÞCðsC;�Þ½T ðsC;�Þ �mð�Þ�; (2)

where V is the volume of the system, and v0 is a molecular
volume that sets the size of the plastic strain increment
induced by a STZ transition. We expect 	0 � Nv0=V to be
a number of the order of unity. As usual [6], we have
defined

�ð�Þ ¼ Nþð�Þ þ N�ð�Þ
N

;

mð�Þ ¼ Nþð�Þ � N�ð�Þ
Nþð�Þ þ N�ð�Þ ;

CðsC;�Þ � 1

2
½RðsC;�Þ þ Rð�sC;�Þ�;

T ðsC;�Þ � RðsC;�Þ � Rð�sC;�Þ
RðsC;�Þ þ Rð�sC;�Þ :

(3)

According to Eq. (1), the equation of motion for mð�Þ is
�0 _mð�Þ ¼ 2CðsC;�Þ½T ðsC;�Þ �mð�Þ� � �ð�Þmð�Þ: (4)

In deriving Eq. (4), we have assumed that _�ð�Þ ¼ 0.
This means that we are focusing on time scales in which
true structural aging is negligible, and in which the linear
response of the system is time-translationally invariant.
However, the onset of structural aging does play an im-
portant role in what follows. The rate at which STZs are
spontaneously created and annihilated by thermal fluctua-
tions is proportional to ð�=�0Þ expð�eZ=�Þ, which has the
form of a conventional activation rate with � playing the
role of the temperature and �ð�Þ=�0 being the attempt
frequency. The kinetic prefactor �ð�Þ is a super-
Arrhenius function of the temperature, associated with
the fact that the configurational rearrangements needed to
form or annihilate STZ-like defects involve many-body
fluctuations that become increasingly complex and un-
likely as the temperature decreases. Accordingly, �ð�Þ is
approximately equal to unity at temperatures well above
the glass temperature but becomes very small at lower
temperatures and would vanish below a glass transition
temperature [11].

We now introduce pð�Þ, a normalized distribution over
barrier heights, and use Eq. (2) to write the total rate of
irreversible deformation in the form

DplðsCÞ¼	0e
�eZ=�

�0

Z
d�pð�ÞCðsC;�Þ½T ðsC;�Þ�mð�Þ�:

(5)

To complete the derivation, we must specify the transition
rate RðsC;�Þ, which determines CðsC;�Þ and T ðsC;�Þ

according to Eq. (3). In a linear theory, CðsC;�Þ must be
independent of sC, and T ðsC;�Þ must be linear in it. The
simplest assumptions for our purposes are

C ðsC;�Þ ’ �0ð�;�Þe��=�; T ðsC;�Þ ’ v0sC
a0�

: (6)

Here, �0ð�;�Þ is a many-body activation prefactor, analo-
gous to �ð�Þ, which does not necessarily vanish at a glass
transition. a0 is a dimensionless number of the order of
unity. We stress that CðsC;�Þ in Eq. (6) describes only
ordinary thermally activated processes. We then write

ð�Þ � 2�0ð�;�Þ expð��=�Þ, ~pð
Þ ¼ �pð�Þd�=d
,
and, in most cases, work with the kinetic quantity 
 instead
of the energy � as the independent variable.
To compute the linear oscillatory response, we assume

that the total shear rate _� is the sum of elastic and plastic
parts:

_� ¼ _sC=�þDplðsCÞ; sC ¼ s� �K � _�; (7)

where � is the shear modulus. We then denote Fourier
transforms as functions of frequency ! by �̂, etc., let
�K � _� ! i!�̂Kð!Þ�̂, and use the preceding equations to
solve for Gð!Þ ¼ ŝ=�̂. The result is

Gð!Þ ¼ i!�0�

�
N ð!Þ

i!�0 þ ��Jð!Þ
�
;

�� ¼ 	0v0�

2a0�
e�eZ=�;

(8)

where

N ð!Þ ¼ 1þ i!

�
�̂Kð!Þ þ �̂Kð!Þ

��0
��Jð!Þ;

Jð!Þ ¼
Z

d
~pð
Þ

�

i!�0 þ �

i!�0 þ �þ 


�
:

(9)

The storage and loss moduli are G0 ¼ Re½G� and
G00 ¼ Im½G�.
In interpreting these results, we note first that Gð!Þ in

Eq. (8) cannot, in any physically meaningful way, be ex-
pressed as an average over Maxwell modes as in SGR [9].
This feature is a result of our kinematic assumption in
Eq. (7), plus our assumption that the plastic strain rate
appearing there is a sum over independent contributions
from the two-state STZs with different �’s. Next, we use
Eq. (8) to compute the Newtonian viscosity associated with
configurational deformations:

�N ¼ lim
!!0

Gð!Þ
i!

¼ ��0
��Jð0Þ ; (10)

and deduce immediately that the low-frequency structure
of Gð!Þ occurs approximately in the neighborhood of

!� � ��Jð0Þ=�0 ¼ �=�N . Thus, !� is the viscous relaxa-
tion rate. However, the structure of the � peak depends on
~pð
Þ, and the approximation made above cannot replace a
full evaluation of Gð!Þ.
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The distribution pð�Þ is a near-equilibrium property of
the configurational subsystem; therefore, it must be deter-
mined by the effective temperature �. Because � is mea-
sured downward from some reference energy, we
postulate, at least for some range of values of �, that
pð�Þ has the form

pð�Þ / eþb�=�; (11)

where b is a dimensionless number. In the limit of small �

(large 
), where �0 ’ 1, Eq. (11) becomes ~pð
Þ ’ ~A
�1�� ,

where � ¼ b�=� and ~A is a normalization factor.
Integrability of pð�Þ requires that this distribution be cut

off at some �> ��, 
 < 
�. To estimate 
�, we argue that
STZ transition rates cannot be slower than the rates at
which the STZs themselves are appearing and disappear-
ing. Therefore, we propose that


� ¼ 2�0ð�;��Þe���=� ¼ 2�ð�Þe�eZ=�: (12)

Note that we do not need to know �0 in order to determine

� from the right-hand side of Eq. (12).

Since the cutoff at �� cannot be infinitely sharp, we
assume that the distribution drops off exponentially,
pð�Þ / exp½�ð����Þ=�1� for �> ��, where �1 is an
energy that may be of the order of �. We combine these
limiting behaviors to write

~pð
Þ ’
~A


½ð
=
�Þ� þ ð
�=
Þ�1� ; (13)

with �1 ¼ �=�1 � 1. This is an oversimplified, three-
parameter representation of ~pð
Þ, with two exponents �
and �1 determining the large-
 and small-
 limits, respec-
tively, and a single crossover value of 
�. It is remarkably
similar to the experimentally deduced distributions shown
in [7]. The parameter � controls the high-frequency behav-
ior of Gð!Þ. A simple scaling analysis for !�0 � � and

� 	 2 predicts that G00ð!Þ � ð!�0Þ�� above the � peak.

We now compare our theoretical results to experimental
data on the rheology of both hard and soft glasses. We first
focus on the oscillatory response of a metallic glass, for
which �0 is of the order of picoseconds, !�0 	 1, and �K

is negligible. The interesting behavior occurs at tempera-
tures near or slightly above the glass temperature. Our
principal sources of information about the oscillatory re-
sponses of structural and metallic glasses are the papers by
Gauthier et al., in particular [1]. These authors show that
the functions Gð!Þ, for a wide variety of noncrystalline
materials at their glass temperatures, have similar behav-
iors. Specifically, the loss modulusG00ð!Þ has a broad peak
at !� and drops off at high frequencies like !�� as
predicted above. For metallic glasses, Gauthier et al.
find � ’ 0:4.

In Fig. 1, we show G0ð!Þ=� and G00ð!Þ=� as predicted
by Eq. (8), along with data from Fig. 2 of [1], for the
metallic glass Vitreloy 4 at its glass temperature Tg.

In estimating the theoretical parameters, we have
used Tg ’ 600 K, �0 ’ 2
 10�12 sec , and � ’ 50 GPa.

To approximate other parameters in Eq. (8), we note that, if
the volume v0 is of the order of a few cubic nanometers,

then the ratio v0�=�g—the prefactor of �� in Eq. (8)—is

approximately 104. Further rough estimates come from a
reanalysis of the viscosity of Vitreloy 1, similar to that
described in [5], but using the present theory and more
accurate parameters. We find that �g=eZ � 0:15, implying

that �ð� ’ �gÞ � expð�eZ=�gÞ � 10�3, and thus that
��� 10. Then Eq. (12) tells us that 
� ’ 10�3�ð�gÞ.
Since we also can estimate �ð�gÞ from the viscosity, we

now have independent estimates for all of our theoretical
parameters to within a factor of 2 or so.
The theoretical curves in Fig. 1 have been compu-

ted using �1 ¼ 1, �ð�gÞ=�0 ¼ 1:25
 10�2 sec�1, and
�� ¼ 25. In effect, we have set 	0=a0 � 2:5 in Eq. (8),
which is well within our theoretical uncertainty. It is
important to note that these parameters imply that

� � 10�17, which is extremely small compared to its
upper limit at 
 ¼ 2. As far as we can tell from numerical
exploration, this small value of 
� is sharply determined by
the experimental data. Changing it by a factor of 2 in either
direction completely ruins the agreement between experi-
ment and theory. The major discrepancy between the theo-
retical curve and the experimental data is that the measured
G0ð!Þ is approximately linear in ! at low frequencies,
instead of being proportional to !2 as predicted by our
theory and by Maxwell models.
We turn now to soft glasses, in particular, to thermosen-

sitive colloidal suspensions, whose rheology differs from
that of structural and metallic glasses in at least two
important respects. First, in colloidal systems, the ap-
proach to jamming near a glass transition is controlled
more sensitively by the volume fraction than by the tem-
perature. Second, the microscopically short molecular
vibration period in structural glasses is replaced in colloids
by the very much longer time scale for Brownian motion of
the particles. As a result, the high-frequency cutoff at
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FIG. 1 (color online). Experimental data for Vitreloy 4 and
theoretical comparisons for the storage modulus G0ð!Þ (red
squares) and the loss modulus G00ð!Þ (blue circles). The data
points were extracted from Fig. 2 in [1], where very similar
curves for oxide and polymeric glasses can be found.
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 ¼ 2 is probed in rheological experiments, and the kinetic
viscosity �̂Kð!Þ is relevant at accessibly high values of !.

In order to evaluate Gð!Þ for colloidal suspensions, we
need an expression for the frequency-dependent kinetic

viscosity �̂Kð!Þ. Here, we follow [12] and write �̂Kð!Þ ¼
��Kðcþ i!�KÞ�1=2, where �K is a viscous time scale, and
c is a dimensionless constant that we have added in order to
regularize this formula at small !.

In Fig. 2 we show two examples of how the STZ theory
developed here is capable of reproducing the experimental
results of Siebenburger et al. [13]. These authors explored a
range of effective volume fractions�eff and a wide range of
frequencies! by using suspensions of thermosensitive par-
ticles (polystyrene cores with attached networks of thermo-
sensitive isopropylacrylamide molecules). The Brownian
time scale in these experiments is �0 ’ 0:003 sec . The
volume fraction for the top panel is �eff ¼ 0:518, while
that for the bottom panel is 0.600. The theoretical parame-
ters, deduced by fitting the data, are listed in the figure
caption.

The trends are interesting. The example in the top panel
of Fig. 2 is a system whose relatively small volume fraction
puts it well away from the glass transition. It is effectively a
liquid; � ¼ 0:04 means that there is substantial but not
dramatic super-Arrhenius suppression of the structural

relaxation rate. In contrast, the system in the bottom panel
is much more glassy; � decreases by two additional orders
of magnitude. The shear modulus � increases and the
viscous time scale �K decreases slightly as the system

becomes stiffer. �� is very large for the liquidlike example
in the top panel, implying that the STZ density is large in

this system. On the other hand, the value of �� and the
relation between 
� and � for the glassy system in the
bottom panel are comparable to the estimates for the bulk
metallic glass in the preceding discussion—despite the fact
that the underlying time scales for these systems differ by
9 orders of magnitude.
The linear oscillatory measurements discussed here are

sensitive probes of the internal structure of glassy materi-
als, revealing the broad range of activation mechanisms
that occur within them and the relation between these
mechanisms and the effective-temperature thermodynam-
ics of glassy disorder. One of the deepest questions that we
have not addressed here, however, is the relation between
internal STZ dynamics and true structural aging, in which
the slow configurational degrees of freedom relax toward
thermodynamic equilibrium. We have begun to address the
latter issues and will report on them in a forthcoming
publication [14].
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FIG. 2 (color online). Experimental data and theoretical com-
parisons for the storage modulusG0ð!Þ (red squares) and the loss
modulus G00ð!Þ (blue circles) for two different suspensions of
thermosensitive particles, as reported in [13]. The values of
the parameters for the top and bottom panels, respectively,
are � ¼ 0:04; 3
 10�4; 
� ¼ 0:001; 10�3�; � ¼ 1:0; 0:5;
�� ¼ 200; 40; � ¼ 12; 35 Pa; and �K ¼ 0:004; 0:002 sec .
In all cases, �1 ¼ 1 and c ¼ 0:1.
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