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Recent tumor growth models are often based on the multiphase mixture framework. Using bifurcation

theory techniques, we show that such models can give contour instabilities. Restricting to a simplified but

realistic version of such models, with an elastic cell-to-cell interaction and a growth rate dependent on

diffusing nutrients, we prove that the tumor cell concentration at the border acts as a control parameter

inducing a bifurcation with loss of the circular symmetry. We show that the finite wavelength at threshold

has the size of the proliferating peritumoral zone. We apply our predictions to melanoma growth since

contour instabilities are crucial for early diagnosis. Given the generality of the equations, other relevant

applications can be envisaged for solving problems of tissue growth and remodeling.
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Introduction.—Soft tissue growth models in ideal ge-
ometries have shown shape instabilities with a special
focus on morphogenesis of living systems [1–3].
Anisotropic or inhomogeneous growth and constraints
due to boundaries are responsible for these shape instabil-
ities. Most models explore the mechanical properties with
perhaps an excessive simplification of the growth process
itself. On the contrary, after several decades since the
pioneering work of Greenspan [4], tumor growth models
have explored all the facets of possible elementary bio-
logical processes known to date [5] with different model-
ing approaches at different scales: continuummodels at the
tissue scale, discrete models at the cells scale, and even-
tually hybrid continuum-discrete models [6]. The recent
review by [6] reports more than 550 citations but few of
them explore the possibility of shape instabilities except in
simplified models [4,7]. However, models based on non-
linear coupled partial-differential equations (PDEs) require
numerical investigations [8,9] with lack of understanding
of the parameters at the origin of shape instabilities.

Nevertheless, these instabilities are often correlated with
the beginning of aggressive neoplasia: they are of utmost
importance for melanoma where symmetry and regularity
are key criteria in clinical methods [10]. Our aim is then to
identify the main biophysical interactions at the origin of
these contour instabilities. It has already been shown, both
in vitro [11,12] and theoretically [13], that mechanical
interactions between cells and their microenvironment
are crucial for tumor evolution and can determine some
macroscopic tumor properties [11].

We discuss here how they can control tumor shape
evolution as well, dictating the condition for the develop-
ment of contour instabilities on a circular growing tumor,
possibly giving rise to the patterns observed in vivo.
We consider a continuous multiphase model describing
the tumor as a two component mixture [6]. Although
simplificative, such a model already contains the main

ingredients: a complex spectrum of cell-to-cell interac-
tions, the elasticity of the tissue and the spatial availability
of diffusing nutrients responsible for growth inhomogene-
ities inside the tumor.
We show explicitly that instabilities are governed mostly

by the cell-cell interactions inside the tumor and we estab-
lish analytically an instability criterion for tumor growth.
We compare our findings with clinical data on healthy skin
and melanoma lesions. Although much more difficult to
establish than standard instability criterions, e.g., appear-
ing in classical pattern formation as the Rayleigh -Bénard
[14] or the Mullins-Sekerka instability [15], our criterion
has the potential to be a useful tool for predicting pattern
formation in early epithelium tumor growth.
Formalism.—We model the radial two-dimensional

growth of a soft tissue by a mixture of two phases, a
proliferating cellular phase (volume fraction �c and ve-
locity vc) and an interstitial liquid phase (�l, vl) in which
nutrients, with concentration n, diffuse from the outer
border of the tumor (healthy tissue). Considering the ve-
locities involved in tumor growth [16,17], the nutrient
advection is negligible, if compared to the diffusion, so
that their transport is simply described by a diffusion
consumption equation @n=@t ¼ Dn�n� �n�cn. Cellular
growth depends linearly on the local nutrient concentration
[18], a limiting factor being oxygen supply [19] causing
often hypoxia and necrosis of the tumor center [20]. Cell
death rate is taken constant, giving the volume transfer rate
from liquid to cellular phase �ð�c; nÞ ¼ �c�cn� �c�c.
The cellular phase is described as an elastic fluid with a
stress tensor Tc defined by the constitutive equation Tc ¼
½��cp� �ð�cÞ�I where p is the hydrostatic pressure of
the mixture and ��ð�cÞI is the excess Cauchy stress,
characterizing cell-to-cell interaction [17]. For physical
and biological consistency, �ð�cÞ has to vanish for �c !
0, to be negative for �c <�e (attraction due to chemo-
taxis, haptotaxis, and cell adhesion), positive for �c >�e,
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and to diverge for �c ! 1 showing a strong repulsion at
high cancerous cell concentration [see Fig. 2(a)]. The
choice of such potential interaction [21], which reminds
us of the Lennard-Jones potential valid for a vast class of
atoms and molecules, may induce a spinodal decomposi-
tion inside the tumor and some mathematical problems,
which are discussed in [22]. This difficulty is circumvented
by choosing a compact initially spreading tumor �c >�e.
Finally we consider a viscous interaction between the two
phases f lc ¼ �fcl ¼ Mðvl � vcÞ þ pr�c, described by
a friction parameter M that gives a Darcy law vc ¼
�Kð�cÞr� in a regime of negligible inertia, with the
porosity coefficient Kð�cÞ ¼ M�1ð1��cÞ2. The bound-
ary conditions at the tumor border xb are nðxbÞ ¼ ne and
�ðxbÞ ¼ �e with�ð�eÞ ¼ 0, ensuring a stress-free bound-
ary. Evolution of the border is given by continuity of the
velocity [23]. The governing equations can be rewritten

in terms of the dimensionless quantities �x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n=Dn

p
x,

�t ¼ �nt, �n ¼ n=ne with
�� ¼ ��1� and � a typical stress

for cell-to-cell interaction. Dropping the bars for the di-
mensionless quantities and the subscripts concerning the
cell phase in the following, the governing equations are

@�

@t
þ r � ð�vÞ ¼ ��n� ��; with �ðxbÞ ¼ �e; (1)

@n

@t
¼ �n��n; with nðxbÞ ¼ 1; (2)

v ¼ �Dð1��Þ2r�; with vðxbÞ ¼ Ve; (3)

with the dimensionless parameters D ¼ �=ðMDnÞ, � ¼
�cne=�n and � ¼ �c=�n. Experimental values and com-
parisons with clinical observations are discussed thereafter
in the case of melanoma where atmospheric oxygen is
the main source of nutrients [19].

Stability analysis.—First, and for simplicity, we begin
with a one-dimensional tumor represented by a planar front
at x ¼ LðtÞ propagating along the x axis [Fig. 1(c)]. The
radial tumor growth is transformed into a planar one by
means of a conformal mapping of the physical plane. The
numerical simulations reveal [Fig. 2(b)] the existence of
steady travelling wave solutions with constant velocity U,
developing a necrotic core (�0 ! 0) in agreement with
clinical observations [16]; but for a range of physical
parameters, these solutions exhibit an instability along
the y axis, that grows and saturates at a certain size
[Fig. 1(c)]. In other words, it seems that a static wavy
undulation is transported by the tumor front during its
propagation along the x axis. To understand this particular
front destabilization we perform a classical stability analy-
sis of both fields� and n with an infinitesimal perturbation
(� � 1) of wave number � such that L ¼ L0 þ
�e�t cosð�yÞ, � ¼ �0 þ �e�tfðzÞ cosð�yÞ and n ¼
n0 þ �e�tgðzÞ cosð�yÞ, with z ¼ x�Ut. The sign of the
eigenvalue �, assumed real for viscous-elastic dynamics,
gives the stability of the front to transverse perturbations.
The long-wavelength limit (� � 1) and the resulting phase

r
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FIG. 1 (color online). (b) Malignant melanoma with irregular
contour: courtesy of Dr H. Kittler (Dept for Dermatology,
University of Vienna) and Dr P. Guitera (Sydney Melanoma
Diagnostic Center). (a),(c) Tumor cell fraction � and front
instability in radial (a) and linear (c) geometry. Dimensionless
parameters are: � ¼ 0:05, � ¼ 0:02, D ¼ 0:2, �e ¼ 0:6
with �ð�Þ ¼ �3ð���eÞ=ð1��Þ.

necrotic core

b

Attraction at

Strong repulsion 
at high density

a

FIG. 2 (color online). (a) Biologically consistent cell-to-cell
interaction, attractive below a volume fraction �e and repulsive
above. (b) Cell volume fraction �0 and nutrient concentration
n0 in the moving referential z ¼ ðx� LÞ associated to the
tumor border LðtÞ (dots) and WKB approximation [24] of n0.
In the inset linear growth of L independent of the initial size,
Lð0Þ ¼ 5, 20, 50.
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diagram have already been reported in [17]. However, the
numerical instabilities usually appear before entering the
unstable long-wavelength domain suggesting for the ei-
genvalue � the scenario sketched in Fig. 3(a) typical of a
symmetry breakdown with generation of a static periodic
pattern. The definition of a typical finite wavelength � ¼
2�=� from our simulations is also coherent with this

scenario (see Fig. 1). Using the change of function f̂ ¼
Gf exp ð� R

0
z U=ð2GÞdz0Þ with G ¼ D�0Kð�0Þd�=d�0,

we get for f̂ at the leading order [17,24]

f̂ 00 � ½�2 þ 	�ðzÞ�f̂ ¼ 0 (4)

where 	�ðzÞ ¼ UG0=ð2G2Þ þU2=ð4G2Þ � ð�n0 � ��
�Þ=G. In the short wavelength limit (large �) the non-
diverging WKB solution of Eq. (4) satisfying the boundary

condition Eq. (1) is f̂ ¼ �Gð0Þ�0
0ð0Þ expð�zÞ. The bound-

ary condition Eq. (3) gives then � ¼ G�0
0�=�0 < 0mean-

ing that the short wavelength domain is always stable for
any value of the parameters. The contour instabilities
observed numerically appear for a finite � given by � ¼
d�=d� ¼ 0 as depicted by Fig. 3(a). For � ¼ 0 and after
linearization, the boundary conditions given in the right of
Eqs. (1) and (3) give the relation at z ¼ 0

f̂0

f̂
¼ ��0

0

2�0

ðT � 1Þ with T ¼ �2ð�� �Þ�0

�0
0U

: (5)

Indeed Eq. (4) is analog to a Schrödinger equation for a
quantum particle with a finite energy ��2 in the potential
	0ðzÞ. Figure 3(b) depicts this potential, which has a cen-
trifugal barrier at z ¼ z� and a negative part near the tumor
border. From quantum mechanics we know that the spec-
trum of eigenvalues is discrete and finite [25]. At the
instability threshold this spectrum should reduce to a
unique critical wavelength �0 as shown in Fig. 3(b). For
�2 > �2

0 ¼ �	0ð0Þ, the nondiverging WKB solutions of

Eq. (4) are f̂ðzÞ ¼ f̂ð0Þ expð�R
0
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 	0ðz0Þ

p
dz0Þ and

Eq. (5) imposes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 	0ð0Þ

p ¼ �ð�0
0=2�0ÞðT � 1Þ. For

T > 1 this solution gives a first root �1, as depicted in
Fig. 3(b). For � < �0 there exists a turning point where the

WKB phase S0� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��2 � 	ðzÞp
cancels and whose posi-

tion zt depends on the � value [see Fig. 3(b)]. The required
boundness of the solution, when the potential diverges
like the centrifugal barrier for quantum states added to
the presence of a turning point, imposes the WKB phase
at z ¼ zt which is very close to �=4 (convergent
Airy function), and thus only a finite discrete set of �
values corresponds to wavy solutions satisfying Eq. (5):
S0�cotanð�=4þ

R
0
zt
S0�dzÞ ¼ �ð�0

0=2�0ÞðT � 1Þ. For 0<
T � 1 � 1 there is at least one � value satisfying
this relation that gives the second root �2 depicted in
Fig. 3(b). For T ! 1þ these two roots converge to �0

and disappear for T < 1. We conclude that T is the control
parameter of the instability at finite wavelength and
2�=�0 is the critical wavelength at instability threshold.
Since 	0 is scaled by ð�0=�Þ2 [24], the selected �will be

of an order 1=ln, ln being the length scale of variation of the
tumor concentration at the border so �� ffiffiffiffiffiffi

�e

p
. The pene-

tration length of the instabilities inside the tumor is fixed
by the position of the turning point zt, close to the tumor
border, which means that instabilities start in the external
part of the tumor. The turning point jz1j for � ¼ 0 gives an
upper bound for this penetration length which corresponds
roughly to the position of the maximum of �0. Therefore
nutrients and instability have the same typical penetration
length ln in the tumor. In physical units the main character-
istics of the instability: the threshold T, the wavelength �
and the instability penetration length ln are then given by:

T¼2�ð�e;neÞKð�eÞ
V2
e

d�

d�e

; ��2�ln�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2Dn

�e�n

s
(6)

with �ð�e; neÞ ¼ ð�cne � �cÞ�e. For �e ¼ 0, i.e., no at-
traction between cells, T ¼ 0 and the tumor front is always
stable as found in the long-wavelength limit and various
tumor models [17,26].
In the more realistic radial case, a necrotic core develops

quickly, all the proliferative activity being confined in a
ring of quasiconstant width l with a radius RðtÞ growing
linearly in time (dR=dt ¼ _R ¼ U) as observed in vivo [16]
[Fig. 1(a)]. After the conformal transformation z ¼
R logðr=RÞ and looking for slowing adiabatic solutions

FIG. 3 (color online). (a) Phase diagram for the growth rate
of instability. (b) Potential 	0ðzÞ and its approximation by
ð�0

0=�0Þ2 (dashed line) at the tumor border. Two WKB solutions

of Eq. (4) [24] for �2
1 >�	0ð0Þ and for �2

2 <�	0ð0Þ. Values
for parameters are � ¼ 0:05, � ¼ 0:02, D ¼ 0:2, �e ¼ 0:6.

PRL 106, 148101 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
8 APRIL 2011

148101-3



with j _Rj � 1, the radial growth is mapped to a planar
growth along z and 2�R periodic along y and we recover
very similar governing equations except a factor
expð�2z=RÞ and 1� z=R in front of the divergence and
the convective term, respectively. Performing the same
stability analysis as for the planar case we get a similar
equation as Eq. (4) for finite wavelength perturbations. For
� ¼ 0 the value of the potential 	0;R at the tumor border

can be written

	0;Rð0Þ ¼ U

2G

�
1

R
� 1

Rc

�
(7)

with a critical radius 1=Rc ¼ 2ð�� �Þ=U�G0=G�
U=2G. Above the instability threshold the first root �1

giving a solution satisfies
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1 þ 	0;Rð0Þ

q
¼ �ð�0

0=2�0Þ�
ðT � 1Þ � 1=R and we conclude that the tumor front is
unstable for T > 1 but only after the tumor size reaches a
critical radius that becomes infinite as T ! 1. One may
think that the wavelength will collapse as time goes on. It is
not true for such �ð�Þ diagram as presented in Fig. 3(b).
Nonlinearities, out of reach of the present analysis, will
bring the contour instability to saturation, fixing the struc-
ture of the pattern close to the aspect at threshold.

Discussion.—We have reported the first analytical proof
for the existence of instabilities in front dynamics governed
by multiphase mixture models. With a WKB treatment
we identify a control parameter T, depending on tumor
cell volume fraction at the border fixed by the cell-to-cell
interaction potential, on the rate of cell growth (prolifera-
tion and oxygen consumption rates), and on the front
velocity. The growth dynamics, for T larger than 1,
reaches, after a transient time, a circular regime up to a
threshold radius value. Later, instabilities start at the outer
edge of the growing melanoma, and the wavelength of the
undulated tumor front has the same typical length as the
nutrient distribution.

Taking into account experimental values ([19] and
references therein) for the model parameters
(�� 0:2–0:67 day�1, �n � 1190–3030 day�1, Dn �
8:64–86:4 mm2 day�1) we estimate the stability properties
of different growing melanoma. Taking oxygen as the
limiting nutrient [19], our model predicts for rapidly
growing melanoma (i.e., nodular melanoma, having Ve �
1:5 mmmonth�1) a control parameter T < 1, a stable sym-
metrical growth, while for slowly growing melanoma types
(Ve ¼ 0:12–0:4 mmmonth�1, [16]) the control parameter
is in the range T ¼ 0:95–16:2, predicting contour instabil-
ities localized in an outer ring of size comparable to the
nutrient penetration length, typically 0:07–0:35 mm. The
predicted threshold radius is less than 0.68 mm, to compare
with the 3 mm threshold given in the ABCDE criteria [10],
for a typical growth rate of 0.33 mm per month, suggesting
that contour instabilities of melanoma are observable in the
early growth of the tumor. Finally the numerical simulation

of our model predicts that a growth rate for melanoma
should be 0.13 mm per month and should vary linearly
with the cells’ proliferation rate, in agreement with clinical
observations and histopathology analysis [16].
Conclusion.—We have established an analytical method

for studying the stability properties of a class of coupled
PDEs governing front evolution. It will allow us to foster
understanding in more detailed models, exploring the con-
nection between geometrical aspects of the tumor and cell
phenotypes. Ultimately, the comprehension of the shape
instability and the pattern formation in multiphase models
is of utmost importance for a wide range of problems
relating to tissue growth, remodeling, and morphogenesis.
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