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We consider phase-coherent transport through ballistic and diffusive two-dimensional hole systems

based on the Kohn-Luttinger Hamiltonian. We show that intrinsic heavy-hole–light-hole coupling gives

rise to clear-cut signatures of an associated Berry phase in the weak localization which renders the

magnetoconductance profile distinctly different from electron transport. Nonuniversal classical correla-

tions determine the strength of these Berry phase effects and the effective symmetry class, leading even to

antilocalization-type features for circular quantum dots and Aharonov-Bohm rings in the absence of

additional spin-orbit interaction. Our semiclassical predictions are confirmed by numerical calculations.
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As a genuinewave phenomenon, coherent backscattering,
denoting enhanced backreflection of waves in complex me-
dia due to constructive interference of time-reversed paths,
has been encountered in numerous systems. Its occurrence
ranges from the observation of the infrared intensity re-
flected from Saturn’s rings [1] to light scattering in random
media [2], from enhanced backscattering of seismic [3] and
acoustic [4] to atomicmatter waves [5]. In condensedmatter,
weak localization (WL) [6,7], closely related to coherent
backscattering, has been widely used as a diagnostic tool for
probing phase coherence in conductors at low temperatures.
Based on time-reversal symmetry (TRS), WL manifests
itself as a characteristic dip in the average magnetoconduc-
tivity at zero magnetic field B. The opposite phenomenon, a
peak at B ¼ 0, is usually interpreted as weak antilocaliza-
tion (WAL) due to spin-orbit interaction (SOI) [8].

In this Letter we show that the average magnetoconduc-
tance of mesoscopic systems built from two-dimensional
hole gases (2DHG) distinctly deviates from the WL trans-
mission dip profiles of their n-doped counterparts. Ballistic
hole conductors such as circular quantum dots and
Aharonov-Bohm (AB) rings, can exhibit a conductance
peak at B ¼ 0, even in the absence of SOI [9] due to
structure (SIA) or bulk (BIA) inversion asymmetry.

Recently, various magnetotransport measurements on
such high-mobility 2DHG have been performed for GaAs
bulk samples [10], quasiballistic cavities [11], and AB
rings [12,13]. However, we are not aware of corresponding
theoretical approaches for ballistic 2DHG nanoconductors
(except for 1D models [14]), despite the huge number of
theory works on ballistic electron transport [15]. Here we
treat 2DHG-based ballistic and diffusive mesoscopic struc-
tures on the level of the four-band Kohn-Luttinger
Hamiltonian [16] for the two uppermost valence bands of
a semiconductor: the heavy-hole (HH) and light-hole (LH)
bands. By devising a semiclassical approach for ballistic
dynamics in the coupled HH and LH bands, we can

associate the anomalous WL features directly with Berry
phases [17] in the Kohn-Luttinger model [18–20] (that
have proven highly relevant, e.g., for the anomalous Hall
[20] and spin Hall [21] effects). Such effects from HH-LH
coupling (which is unrelated to SOI due to SIA and BIA)
are hence of conceptional importance for a complete
understanding of WL in 2DHG. They are not captured by
effective two-band models usually used for the analysis of
WL experiments [22]. We show that the strength of the
related effective ‘‘Berry field,’’ giving rise to effective TRS
breaking at B ¼ 0 and a splitting of the WL dip, is deter-
mined by a classical correlation between enclosed areas
and reflection angles of interfering hole trajectories rele-
vant for WL. This geometrical correlation is not amenable
to existing random matrix approaches for chaotic conduc-
tors [15]. We confirm our semiclassical results by numeri-
cal transport calculations and discuss effects of SOI.
Hamiltonian and band structure.—To describe the

2DHG we represent the Kohn-Luttinger Hamiltonian [16]
in an eigenmode expansion for a square well of width a
modeling the vertical confinement [9]. Employing Löwdin
partitioning [23] we construct an effective Hamiltonian
based on the relevant, lowest subband in the z direction
[22]. The resulting 4� 4 Hamiltonian for a quasi-2DHG
then describes coupled HH and LH states with spin pro-
jection �3=2 and �1=2, respectively. Without SOI due to
SIA or BIA, the 2DHG Hamiltonian reads
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with the upper and lower blocks composed of [24]

PRL 106, 146801 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
8 APRIL 2011

0031-9007=11=106(14)=146801(4) 146801-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.146801


P̂ ¼ � @
2

2m0

½ð�1 þ �2Þk̂2k þ ð�1 � 2�2Þhk̂2zi�; (2a)

T̂ ¼ � ffiffiffi
3

p @
2

2m0

½�2ðk̂2x � k̂2yÞ þ 2i�3k̂xk̂y�; (2b)

with Q̂ð�1; �2Þ ¼ P̂ð�1;��2Þ. Here, k̂ ¼ ðk̂x; k̂y; k̂zÞ is the
wave vector with projection k̂k onto the xy plane of the

2DHG and hk̂2zi ¼ ð�=aÞ2 is the expectation value of kz for
the lowest subband. Below we use the axial approximation,

�� ¼ �2 ¼ �3, for the parameters in T̂ that couple HH and
LH states. The band structure for the bulk and 2D case is
shown and compared with an 8� 8Kane model [9] in [22].
Because of the 2D confinement the HH-LH bulk degener-
acy is lifted [22] indicating enhanced HH-LH coupling
which will play an important role for the WL analysis
below. To this end we will calculate the two-terminal
Landauer conductance

G ¼ e2

h
T ¼ e2

h
ðTU þ TLÞ ¼ e2

h

XN
n;m

X
�;�0

jtm;�0;n;�j2 (3)

with the transmission amplitudes tm;�0;n;� given by the

Fisher-Lee relations [25]. The indices m and n label N
transverse modes in the leads, and � 2 fU;Lg with U 2
fHH *;LH #g and L 2 fHH +;LH "g denotes the HH and
LH modes. The Hamiltonian (1) with blocks obeying

Ĥ UðBÞ ¼ Ĥ
y
Lð�BÞ allows us to separately define related

total transmissions, TU, TL, fulfilling TUðBÞ ¼ TLð�BÞ.
Depending on the Fermi level EF we distinguish the case

where HH and LH states are both occupied from the case
where EF is close to the band gap such that only HH states
contribute to transport. We first study the latter case and
focus on effects from the HH-LH coupling.

HH-LH coupling and Berry phase.—For ballistic meso-
scopic systems of linear size L in the regime kL � 1, we
will generalize the semiclassical approaches [26,27] to the
Landauer conductance from electron systems with a para-
bolic dispersion to the p-doped case with more complex
band topology. In particular, transport in the HH band will
be affected by residual coupling to the LH band. The main
effect of this coupling is to change the charge carriers’
energy and phase. The change in their energies are well
described by conventional perturbative approaches leading
to new terms in the effective Hamiltonian, while the
changes in their phases are conveniently accounted for in
terms of a Berry curvature and associated Berry phases
entering into the semiclassical dynamics [20,28]. In a
momentum space representation, the geometrical phase
��, accumulated along a path during an adiabatic transition
in k space associated with a reflection from a (smoothly
varying) boundary potential, is given by [18,19]

��¼
Z
A�ðkÞdk; A�ðkÞ¼�ihc �ðkÞjrkc �ðkÞi: (4)

This phase adds to the usual dynamical phase in the
semiclassical treatment [see Eq. (8) below]. Using for

c �ðkÞ the free solutions of Hamiltonian (1) we find after
diagonalization for the vector potential

A HH*ðkÞ ¼ �AHH+ðkÞ ¼ 3
�BerryðkÞ

k2
ky
�kx

� �
; (5)

and ALH#ðkÞ ¼ �ALH"ðkÞ ¼ �½ð3�þ 2Þ=3��AHH*ðkÞ
with �BerryðkÞ ’ � 1

8 ðka� Þ4, to leading order in ka=�. The

Berry phase for a reflection at a smooth boundary is then

�
Berry
HH* ð’Þ ¼ ��

Berry
HH+ ð’Þ ¼ �Berry sin’ð2� cos’Þ; (6)

where ’ denotes the change in momentum direction.
For a specular reflection at a hard-wall (HW) confine-

ment, a corresponding phase shift is obtained [22]:

�HW
HH*ð’Þ ’�HW�1

�HW sin2’; �HW ’ ��1 þ ��

4 ��

�
ka

�

�
2
: (7)

Average magnetoconductance.—A semiclassical ap-
proach proves convenient to incorporate these additional
(Berry) phases into a theory ofWL. For a (chaotic) ballistic
dot the known semiclassical amplitude [26] for electron
transmission from channel n to m is generalized to
tm;HH*;n;HH* ’ P

�C�K� expði@S�Þ, in terms of a sum over

lead-connecting classical paths � with classical action S�,

weightC� (including the Maslov index), and a factorK� ¼
exp½iPnb

j¼1 �HH*ð’jÞ� accounting for the accumulated

phases (6) or (7) after nb successive reflections. In view
of Eq. (3) the total semiclassical transmission probability
for HH * states reads

TU ’X
n;m

X
��0

K�K
�
�0C�C

�
�0e

ði=@ÞðS��S�0 Þ: (8)

The diagonal term, � ¼ �0, yields the classical transmis-
sion [26] since the phases cancel and K�K

�
� ¼ 1.

In the following we consider WL contributions which
arise as quantum interference effects (after averaging)
from off-diagonal pairs of long, classically correlated paths
� � �0 with small action difference (S� � S�0 � @),

where � forms a loop and �0 follows the loop in the
opposite direction while it coincides with � for the rest
of the trajectory [27]. Because of the time-reversed tra-
versal of the loop the two paths acquire, in the presence of a
magnetic field B, an additional action difference ðS� �
S�0 Þ=@ ¼ 4�AB=�0, where A is the enclosed (loop) area

and�0 the flux quantum. Moreover, during the loop � and
�0 have opposite reflections, ’j ¼ �’0

j, and hence

K�K
�
�0 ¼ exp½2iPnb

j¼1 �HH*ð’jÞ�. For chaotic dynamics in

a cavity where the escape length Lesc is much larger than
the average distance Lb between consecutive bounces, we
can introduce probability distributions for the areas A and
the phases

Pnb
j¼1 �HH*ð’jÞ. Our classical simulations for

both the smooth and the HW case revealed that the proba-
bility distributions of

Pnb
j¼1 �HH*ð’jÞ coincide very well

(for nb > 5 and � < 1) with the distribution ~�
Pnb

j¼1 ’j with

a renormalized HH-LH coupling ~�Berry ’ 0:6�Berry and
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~�HW ’ 0:2�HW. This allows us to treat both cases on equal

footing using K�K
�
�0 ¼ e2i

~�� with � ¼ Pnb
j¼1 ’j.

Generalizing the semiclassical approaches for electron
[26,27] to HH * ( + ) transport, the WL correction can then
be expressed as an integral over trajectory lengths,

�TUðLÞ ¼ �Tð0Þ

Lesc

Z 1

0
e�L=LescMðL;B;	~�ÞdL: (9)

Here �Tð0Þ denotes WL for B ¼ 0, ~� ¼ 0 [�Tð0Þ ¼
�1=ð4� 2=NÞ for chaotic electronic conductors [15]], and
M ðL;B; ~�Þ ¼

Z 1

�1
dA

Z 1

�1
d�PLðA;�Þe2�i½~��=�þ2AB=�0�;

(10)
where PLðA;�Þ is the joint probability distribution for the
accumulated areas and angles. While both parameters
follow Gaussian distributions, we stress that there exist
nonuniversal correlations between A and � reflecting the
geometry of the quantum dot. When plotting PLðA;�Þ
these correlations show up as deviations from a circular
symmetry, as illustrated in Fig. 1(a), showing classical
simulations for a chaotic cavity [inset of Fig. 3(a)].

The central limit theorem implies a two-dimensional
multivariate normal distribution,

PLðA;�Þ / exp

�
�ðA=A0Þ2 þ ð�=�0Þ2 � 2�A�=ðA0�0Þ

2ð1� �2ÞL=Lb

�
:

(11)

Correlations are encoded in � ranging from 0 to �1.
Assuming ergodicity we obtain for the variances of the
angle �2

0 ¼ 4ð�� 2Þ, area A2
0’ 2

15½L2
bþvarðLbÞ�2, and co-

variance �A0�0 ¼ L2
bð�4 � 1

3Þ. This leads to the geometry-

dependent � ’ 0:58=½1þ varðLbÞ=L2
b�, i.e., � < 0:58 for

a chaotic system. [� 
 0:5 for the cavity in Fig. 3(a).]
The correlations can be stronger in nonchaotic systems
and are pronounced for a disk [inset of Fig. 3(b)] as we
see in Fig. 1(b). (We find � 
 0:8.)

Using Eqs. (10) and (11), we get from Eq. (9) semiclas-
sically a Lorentzian WL dip magnetoconductance profile

�TUðLÞðBÞ ¼ ��Tð0Þ

1þ ½2� ffiffiffiffiffiffiffi
2�

p
A0ðB	 BBerryÞ=�0Þ�2Lesc=Lb

;

(12)

with a depth �TUðLÞðBminÞ ¼ ��Tð0Þ, with
� ¼ ½1þ 2�2

0ð1� �2Þ~�2Lesc=Lb��1: (13)

As a main result, the WL dip is shifted by the Berry field

BBerry ¼ �~��0�0=ð2�A0Þ; (14)

which relies on both quantumHH-LH coupling ~� and finite
classical A-� correlations �.

In Figs. 2(a) and 2(b) we compare our predictions (13)
and (14) for the dip depth, �TUðBminÞ ¼ ��=ð4� 2=NÞ,
and displacement, BBerry, with numerical recursive Green

function calculations [29] of these quantities for a chaotic
quantum dot [inset of Fig. 3(a)] for different HH-LH
couplings by tuning the vertical confinement a. The nu-
merics (symbols) show quantitative agreement with the

semiclassical curves (lines), which are entirely based on
the classical parameters A0, �0, and �.
Finally, we analyze in the central Fig. 3 the effect of the

geometrical correlation � on WL in different representa-
tive mesoscopic systems for fixed, realistic HH-LH cou-
pling. Figure 3(a) depicts the WL profile of a chaotic
cavity. Our semiclassical results (without free parameters)
show remarkable agreement with the quantum calcula-
tions. The nonzero � 
 0:5 gives rise to a splitting of the
TU and TL traces by 2BBerry leading to a flattened WL dip

for TU þ TL compared to the Lorentzian WL profile for
electrons. Figure 3(b) shows results for the circular dot
with larger correlation (� 
 0:8). Accordingly, the Berry
field is stronger leading to a WAL-type overall profile.
Correspondingly, we find in the averaged transmission of
AB rings [Fig. 3(c)] distinct additional features at B ¼ 0
absent in electron transport (see also [14]).
We close with several remarks.
(i) Corresponding transport calculations for dots with

smooth confinement yield a ka scaling ofBBerry close to the

quartic behavior predicted by �Berry from Eq. (5).
(ii) The correlation mechanism is not restricted to bal-

listic systems but is also relevant in diffusive ones, as
illustrated in Fig. 3(d), leading to broadening and devia-
tions of theWL profile from that of a digamma function for
electrons.

FIG. 1 (color online). Probability distributions to find an orbit
with enclosed area A and accumulated angle � for (a) a chaotic
cavity [inset of Fig. 3(a)] and (b) a disk [inset of Fig. 3(b)].
[Central (red) regions correspond to high probability.]
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FIG. 2 (color online). Dependence of (a) the depth
�TUðLÞðBminÞ and (b) the position Bmin of the magnetotransmis-

sion weak localization dip on ka [governing the effective HH-
LH coupling, see Eq. (7)] for HH transport through a chaotic
quantum dot [inset of Fig. 3(a)]. Numerical quantum results
(symbols) are compared to the semiclassical predictions (13) and
(14), [(green) lines] for �1 ¼ 6:85, �� ¼ 2:5 (for GaAs).
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(iii) If HH and LH states are both occupied and contrib-
ute to transport, our quantum calculations show a vanish-
ing WL correction both for diffusive and chaotic ballistic
conductors due to effective TRS breaking in the individual
subblocks, which, as far as we know, has not been reported
before. It is notable that this kind of effective TRS break-
ing, recently discussed in the context of graphene and
topological insulators [30], is already present in the well-
established system of a 2DHG. Interestingly, if only HH
states are occupied, TRS breaking in each subblock can be
traced back to the Berry field (14); i.e., system-specific
classical correlations determine the degree of TRS break-
ing, and hence the mere knowledge of the overall univer-
sality class is insufficient.

(iv) SOI terms due to SIA and BIA couple the subblocks,
eventually restore TRS, and give rise toWAL effects on top
of the mechanisms illustrated in Fig. 3; we checked this
numerically for BIA for the diffusive and ballistic case.
Hence in 2DHG-based AB measurements such as [12,13]
presumably both SOI and HH-LH coupling-induced
phases affect the AB signal. The latter mechanism should
be more clearly observable in systems with reduced SOI
such as WL studies in Si [31]. Moreover these WAL effects
might also be visible in p-doped ferromagnetic semicon-
ductors such as GaMnAs [32].

(v) We found equivalent Berry phase-induced WL phe-
nomena also in quantum transport through HgTe-based
quantum wells with SOI [22].
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