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It is commonly believed that strongly interacting one-dimensional Fermi systems with gapless

excitations are effectively described by Luttinger liquid theory. However, when the temperature of the

system is high compared to the spin energy, but small compared to the charge energy, the system becomes

‘‘spin incoherent.’’ We present numerical evidence showing that the one-dimensional ‘‘t-J-Kondo’’

lattice, consisting of a t-J chain interacting with localized spins, displays all the characteristic signatures

of spin-incoherent physics, but in the ground state. We argue that similar physics may be present in a wide

range of strongly interacting systems.
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The physics of interacting one-dimensional (1D) fermi-
onic systems is described by a universal effective theory
called ‘‘Luttinger liquid’’ (LL) theory [1], in which the
low-energy physics is dominated by bosonic collective
excitations. The original fermions lose their identities as
low-energy excitations, giving rise to the phenomenon of
spin-charge separation, with distinct collective spin and
charge excitations (spinons and holons, respectively) that
have their own characteristic velocity and Hamiltonian.

Recently, a previously overlooked regime at finite tem-
perature has come to light—the ‘‘spin-incoherent Luttinger
liquid’’ (SILL) [2,3]. If the temperature is higher than the
characteristic spin energy scale, but much smaller than the
Fermi energy [4], spins become totally incoherent, effec-
tively at infinite temperature, while the charge sector re-
mains very close to its ground state. This regime is
characterized by universal properties in the transport, tun-
neling density of states, and the spectral functions [2].

In an earlier work [5], we have described the spectral
properties of a 1D t-J chain at finite temperature (corre-
sponding to the strong coupling limit of the Hubbard
model), and understood the crossover from spin-coherent
to spin-incoherent regimes in terms of a transfer of spectral
weight. In this work we establish an analogy between
finite-temperature SILL physics, and the ground-state
properties of certain model Hamiltonians.

We motivate our results by establishing an analogy
between (i) a thermal mixed state and (ii) a pure state in
an enlarged Hilbert space. This is the key idea behind the
so-called thermofield formalism [6]. For illustration pur-
poses, let us first assume that we have two spins S ¼ 1=2,
that we put into a maximally entangled state

jI0i ¼ 1
ffiffiffi

2
p ½j ";~#i � j #;~"i�; (1)

where the sign is irrelevant in the following treatment. We
shall assume the first spin is our ‘‘physical’’ spin, while the
one with a tilde is the ‘‘ancilla,’’ or impurity spin. It is

straightforward to see that the reduced density matrix of
the physical spin, after tracing over the ancillary degrees of
freedom, is the identity matrix. Thus, if we assume that
the ancilla acts as some sort of effective thermal bath, the
physical spin is at infinite temperature. It is easy to see that
the maximally mixed state for a number of spins can be
rewritten as jIi ¼ Q

ijI0ii, defining the maximally en-
tangled state jI0ii of spin i with its ancilla, as in Eq. (1).
This construction allows one to represent a mixed state of a
quantum system as a pure state in an enlarged Hilbert space
and lies at the core of the imaginary-time Density Matrix
Renormalization Group (DMRG) [7].
With this picture in mind, it is natural to draw an analogy

to the physics of one-dimensional Kondo lattices [8]. Let
us first consider a particular model describing a one-
dimensional chain of fermions with strong repulsive on-
site interaction U, the t-J model

Ht-J¼�t
X

L

i¼1;�

ðcyi�ciþ1�þH:c:ÞþJ
X

L

i¼1

ð ~si � ~siþ1�1

4
niniþ1Þ;

(2)

with the implicit constraint forbidding double occupancy.

Here, cyi� creates an electron of spin � on the ith site along
a chain of length L. The exchange energy J � t2=U, and
we take the interatomic distance as unity. We express all
energies in units of the hopping parameter t.
In the J ¼ 0 limit, the ground state of the t-J model

factorizes into the Ogata-Shiba wave function [9], a prod-
uct of a fermionic wave function j�i, and a spin wave
function j�i

jg:s:i ¼ j�i � j�i: (3)

The first piece, j�i, describes the charge degrees of free-
dom, and is simply the ground state of a spinless non-
interacting tight-binding Hamiltonian. In this limit, the
spin states are degenerate and the dispersion is just a
noninteracting band �ðkÞ ¼ �2t cosðkÞ, but any finite
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interaction will lift this degeneracy and give the spin
degree of freedom some dispersion. Figure 1 in Ref. [5]
shows the spectrum the t-J chain with, J=t ¼ 0:05.

Now it is easy to construct a generalization of the Ogata-
Shiba wave function to describe the system at infinite spin
temperature. All we have to do is to add spin ancillas, and
replace the spin component in Eq. (3), by the correspond-
ing maximally entangled state, jIi ¼ Q

ijI0ii, jc SILLi ¼
j�i � jIi. Thus, the charge will remain at zero temperature,
while the spin component will be effectively at infinite
temperature. This state describes the spin-incoherent
regime.

Now, leaving the ancillas aside for a moment, let us
return to the original model and construct the full
‘‘t-J-Kondo’’ Hamiltonian by adding localized impurities
interacting with the conduction fermions via an antiferro-
magnetic exchange, JK:

H ¼ Ht-J þ JK
X

L

i¼1

~si � ~Si; (4)

where ~si describes the conduction spins and ~Si the local-
ized spins with Ht-J given in Eq. (2).

Curiously, the t-J-Kondo lattice has not received much
attention in the literature [10]. The ‘‘Kondo-Hubbard’’
lattice (from which the t-J-Kondo model can be derived)
has been studied in Ref. [11]. A key result is that its ground
state for large Coulomb repulsion U has a total spin Stot ¼
ðL� NÞ=2, where L is the length (number of sites) of the
chain, and N is the total number of conduction fermions.
This is similar to the situation for large JK, and no
Coulomb repulsion [8,12]. However, Coulomb repulsion
can drive the system into a ferromagnetic (FM) ground
state, even for small JK [10].

In the limit of large JK the fermions are strongly en-
tangled with the localized spins, and the excitations be-
come heavy polarons [13,14]. We are interested in the
small J (large U) regime where the spinons are almost
dispersionless, and the coupling JK is small and of the
order of J. In this case, the interaction JK is nominally a
small perturbation, and one expects that the charge of the
conduction fermions will not be affected since it is practi-
cally decoupled from the spin. Let us assume first that
J ¼ 0: an infinitesimal JK will pair the conduction spins
to the impurities. For sufficiently large JK � t the
corresponding state can be described by a product wave
function [12]:

jg:s:i ¼ j�i � jIi � j�i; (5)

where the charge component j�i corresponds to pairs
moving in a background of unpaired polarized impurities
j�i. The pairs have their conduction spin maximally en-
tangled to their impurity partner jIi. By looking at the left
two terms of this wave function, we can easily identify the
spin-incoherent state jc SILLi. Indeed, the unpaired impu-
rities do not play a role in the dynamics of the conduction

fermions. Thus, we have established a rigorous analogy
between the ground state of the t-J-Kondo lattice in the
J ¼ 0 limit, and the spin-incoherent state described by the
Ogata-Shiba wave function at infinite spin temperature.
Notice, however, that the charge excitation will have a
gap for breaking a pair, that can be exponentially small
for small JK.
In the J ¼ 0 limit, the system is FM for any finite value

of JK. However, for a finite value of J, one expects that as
the Kondo interaction JK is turned on, a paramagnetic
(PM) window will open. In Fig. 1(a) we show a schematic
phase diagram of the model for J ¼ 0:05, as a function of
the density n and Kondo coupling JK. The data points cor-
respond to the transition from a PM state with Stot ¼ 0 to a
state with finite Stot [15,16], calculated with DMRG and
exact diagonalization on small systems with open bound-
ary conditions. Interestingly, our results suggest that the
PM phase occupies a small sliver separating two large FM
regions. The study of this phase diagram deserves further
attention but remains out of the scope of this work.
We expect that the ground state in the FM region at large

JK will approximately be described by Eq. (5), while in the
small JK region the system will be in a crossover regime:
the localized spins will act as an effective spin and thermal

FIG. 1. (a) Proposed phase diagram of the t-J-Kondo model
with J ¼ 0:05, as a function of the density and Kondo coupling
JK , obtained with exact diagonalization on small systems (solid
symbols) and DMRG (open symbols). The gray shading corre-
sponds to the FM phase, while the empty region is PM. The
dashed line is a guide to the eye. (b) Derivative of hHt-Ji with
respect to the Kondo coupling JK , as explained in the text, for a
chain with L ¼ 32, N ¼ 24 fermions, and Sztot ¼ 4.
(c) spin structure factor and (d) momentum distribution of a
t-J-Kondo chain with L ¼ 64 sites and N ¼ 48 fermions, for
different values of the Kondo coupling JK.
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reservoir, by increasing the ‘‘spin temperature’’ of the
conduction fermions and driving them spin incoherent, in
the ground state. Thus, the interaction JK parametrizes an
effective temperature for the conduction electron spins. We
note that this ‘‘temperature’’ will not necessarily have a
one-to-one correspondence with an actual temperature.

To illustrate this point we have calculated the ground
state for the Hamiltonian (4) using the DMRG method
[17]. We have picked the parameters J ¼ 0:05 and n ¼
N=L ¼ 0:75 to be able to compare with the finite-
temperature results of Ref. [5]. As a technical point, we
remark that unless otherwise stated we work in the Sztot ¼ 0
subspace. Even though we have encountered a paramag-
netic window for JK � 2J (see Fig. 1) [10], this is not
relevant to our interpretation of the results, as we shall see
below.

For JK ¼ 0 the ground state is massively degenerate,
since all configurations of localized spins will have the
same energy. As we increase JK, this degeneracy is lifted,
but convergence is extremely difficult. In our calculations
we have retained up to 600 states. Once the ground-state
wave function is determined, we can calculate the energy
of the conduction fermions as Et-J ¼ hHt-Ji, where Ht-J
is described by Eq. (2). We then define an effective ‘‘spe-
cific heat’’ as the derivative dEt-J=dJK of the energy
with respect to our effective temperature JK, as shown in
Fig. 1(b). In this case we have plotted the results for
L ¼ 32, N ¼ 24, and Sztot ¼ ðL� NÞ=2 ¼ 4 to avoid level
crossings. We point out that the results for Sztot ¼ 0 are
practically indistinguishable, meaning that the total spin
does not seem to affect the general behavior of the con-
duction fermions. These results should be compared to
those obtained in Fig. 2 or Ref. [5] using time-dependent
DMRG in imaginary time [7]. The features are qualita-
tively the same: the flattened curve after the hump indicates
that all the spins have been thermally excited, and have
basically thermalized at a value of JK � J. It is noteworthy
that this behavior reflecting a crossover between two differ-
ent regimes remains hidden in the total energy and only
becomes apparent after the t-J contribution is taken into
account separately.

To explore the analogy to spin-incoherent systems fur-
ther, we have calculated the static spin structure factor SðkÞ,
and the momentum distribution function nðkÞ for the con-
duction fermions, as a function of JK. In Figs. 1(c) and 1(d)
we show our zero-temperature results for L ¼ 64, N ¼ 48,
that should also be compared with their finite-temperature
counterparts shown in Figs. 3(a) and 3(b) of Ref. [5].
Shown is the diagonal component of the spin structure fac-
tor. Again, the behavior is very similar and the analogy is
clear: in SðkÞ we see a peak at k¼2kF, with kF	�N=2L,
and a pronounced minimum at k ¼ 0. For small values of
JK the magnitude of the peak decreases and the minimum
at k ¼ 0 increases. At temperatures of the order of T ’
JK ’ J, the spin structure factor becomes essentially

featureless, indicating that the spins are effectively at
‘‘infinite’’ temperature. These features are also observed
in the conventional Kondo lattice, but in that case it corre-
sponds to the formation of singlets in the strong JK regime
[18]. Note that for the range of parameters corresponding
to the PM regime in Fig. 1, a very small feature appears at
k ¼ �ð1� nÞ, possibly indicating a large Fermi surface.
The behavior of nðkÞ is even more enlightening. Again

we find the same features observed in a finite-temperature
t-J model: at small values of JK we see the typical LL
profile, with no discontinuities at the Fermi point and a
singularity at k ¼ 3kF. We also notice that the values nðkFÞ
and nð2kFÞ are independent of JK within the accuracy of
our calculation, as observed in Ref. [5] (where they are also
independent of temperature). We see that the inflection
point in nðkÞ shifts from kF towards 2kF, indicating the
onset of the spin-incoherent regime, understood as a shift
from particles with spin dynamics to particles that are
effectively spinless [19]. This behavior resembles the phys-
ics of the Kondo lattice model, where the Fermi surface is

enlarged by absorbing the local moments ~Si into the Fermi
sea [20]. However, it differs from it in that this leads to a
shift from kF ¼ �N=2L to a new value of �ðN þ LÞ=2L
[21], different than the value of 2kF that occurs generically
in the spin-incoherent regime. We believe that the large
Fermi surface singularity is not seen due to the fact
that system is dominated by FM correlations and spin-
incoherent physics.
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FIG. 2 (color online). Momentum resolved spectrum of a
t-J-Kondo chain of L ¼ 32 sites, with J=t ¼ 0:05 and density
n ¼ 0:75, calculated with time-dependent density matrix renor-
malization group method, showing a transfer of the spectral
weight as JK increases, toward a spectrum that resembles a
spin-incoherent Luttinger liquid at a crossover value of JK � 0:05.
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To confirm that the features observed above indeed
correspond to a spin-incoherent regime at zero tempera-
ture, we have calculated the photoemission spectrum [22]
of the model using the time-dependent DMRG method as
described in Ref. [23]. We have used the same parameters
as in Ref. [5] for the finite-temperature calculations. Our
results for different values of JK are shown in Fig. 2. These
spectra should be compared to those of the t-J chain at
finite temperature shown in Fig. 4 of [5]. We can see a
remarkable correspondence between the finite-temperature
spectra and the spectra of the t-J-Kondo chain. We first
notice a lack of spectral weight above the Fermi level
(whereas it is there in Ref. [5]), which is to be expected
since these are zero-temperature calculations. We do not
see an important change in the bandwidth, which means
that for these values of JK, the interaction with the local-
ized spins has a minimum effect on the fermion effective
mass. The most noteworthy feature is a transfer of spectral
weight from the holon and shadow bands in such a way that
at higher values of JK the spectrum resembles the disper-
sion for spinless fermions. This is precisely the behavior
expected from a spin-incoherent Luttinger liquid, and is
reinforced in the FM regime at JK ¼ 0:2. The apparent
discretization of the spectrum appears as a combination of
two effects: the convolution of the holon dispersion with
the relatively flat spinon dispersion, and the relatively
small size of the system considered here. One may argue
that since there is a level crossing at finite JK, these results
may correspond to ground states with different excitations.
However, we have repeated the calculations for different Sz

subspaces, always finding similar behavior, irrespective of
the ground-state spin sector. Therefore, we can assert with
confidence that these observations apply generically to the
model.

To summarize, we have presented numerical results
supporting our argument that in the small J regime, the
t-J-Kondo lattice may indeed display spin-incoherent be-
havior in the ground state, with the interaction JK parame-
trizing an effective temperature and the localized spins
acting as an effective thermal bath.

We believe that this behavior may be a generic feature of
many quasi-1D strongly interacting system systems, such
as t-J ladders. Preliminary results support this assertion
and will be presented elsewhere [24]. We can extrapolate
our argument to higher dimensions, as well as heavy-
fermion and multiband systems [25]: the observation of
spin-charge separation in bulk systems, if present, may be
hindered by small interactions that may wash out the
characteristic signatures of the spin degrees of freedom.
Instead, one might only be able to see the charge excita-
tions, with spectral properties that would resemble a gas of
spinless fermions with a large Fermi surface. Therefore,
experimental efforts seeking evidence of spin-charge sepa-
ration may be more effectively focused toward looking for
evidence of spin-incoherent behavior.
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