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In this Letter we study the effect of Pauli blocking on Efimov states in a quantum Fermi gas and

illustrate that the universal Efimov potential is altered at large distances. We obtain the universal spectrum

flow of Efimov trimers when the Fermi density is varied and further consider the effect of scattering of

trimers by the Fermi sea. We argue that the universal flow is robust against fluctuating particle-hole pairs

that result in an infrared catastrophe in impurity problems.
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Recently, universal three-body Efimov structures that
were first proposed in the 1970s have been successfully
probed and determined in a series of remarkable cold-
atom experiments on inelastic loss spectra [1–13]. The
current data that cover an impressive range of scattering
lengths quite conclusively demonstrate the universality of
the Efimov structures [12,13]. The spectacular progress
made on this subject has further illustrated that the physics
of cold atoms at submicrokelvin temperatures can shed light
on fundamental issues in other systems at very different
energy scales, in this case the few-body structures of nuclei.

Although Efimov physics [1,2] and the theory of loss
rates [3,4] have so far been quite successful in explaining
many aspects of the data, in experiments on cold gases
there are always many-body backgrounds. Logically, it is
important to understand how few-body states respond to
the presence of a quantum many-body background below
degeneracy temperatures. For instance, can Efimov trimers
survive a many-body background and how are they af-
fected when scattered by the background? An equally
important and challenging question is what kind of
many-body correlations can be induced by the universal
few-body states in a quantum gas or mixture. In this Letter,
we attempt to answer one of these questions, and particu-
larly to examine the effect of Pauli blocking of scattering or
open-channel Fermi atoms on the three-body Efimov
states. To answer this question, we solve the three-body
spectrum in the presence of a Fermi sea and focus on the
effect of Pauli blocking on the Efimov physics. These
spectra are known to be one of the cornerstones for the
theory of three-body recombination and the loss spectrum
of metastable quantum gases. Our results can also be
applied to study the dynamics during the initial stage of
recombination and estimate the lifetime of quantum gases.

In the following, we consider that two identical heavy
Bose atoms with mass M have an interspecies resonance
with a light Fermi atomwith massmð� MÞ in the presence
of a Fermi sea of light atoms. In the Born-Oppenheimer
approximation, we can analyze the fast motion of the light
atom assuming that the two slow heavy atoms are a dis-
tance R apart. In the absence of a Fermi sea, simultaneous

near-resonance scattering of the light atom by the two
heavy atoms induces a bound state, and the binding energy
at resonance is equal to @

2�2=2�R2, where � ¼ 0:567 is
the root of � ¼ e�� (see below) and � ¼ mM=ðmþMÞ
is the reduced mass of a light-heavy subsystem. The bound
state therefore glues together the two heavy atoms and
yields an attractive long range potential �@

2�2=2�R2.
This universal 1=R2 potential plays a paramount role in
Efimov physics and results in the spectacular universal
hierarchy structures in three-body spectra [1,2]. We then
investigate the effective attractive potential between two
heavy atoms in the presence of a Fermi sea with Fermi
momentum @kF. The interspecies interactions can be
treated as zero-range ones [14,15], so that for a light
atom interacting with two heavy atoms at �R=2, VðrÞ ¼
V0½�ðr�R=2Þ þ �ðrþR=2Þ� where

1

V0

¼ �

2�aHL@
2
� 1

ð2�Þ3
Z

dk
1

��k
: (1)

Equation (1) relates the contact interaction strength V0 to
the scattering length aHL via a standard regularization
procedure [16]. Here ��k ¼ @

2k2=2� and now the reduced

mass ��m since M is much heavier than m. The
Schrödinger equation for �ðkÞ, the momentum-space
wave function for the light atom, is

ð�mk � ELÞ�ðkÞ ¼ �2V0

ð2�Þ3
Z

dk0 cos
ðk� k0Þ �R

2
�ðk0Þ;

(2)

where �mk ¼ @
2k2

2m is the kinetic energy for the light atom,

and �ðkÞ ¼ 0 when k is within a spherical Fermi surface
of radius kF due to the Pauli blocking effect. We find that
the binding energy EL is given by

2

�

ffiffiffiffiffiffiffiffiffiffi�uL
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�
þ 2kF

�
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aHL
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�R

Z 1

kF

dq
q sinqR

q2 � uL
; (3)

where we have set uL ¼ 2mEL=@
2. This equation is valid

for �1< uL < k2F, and has a unique solution for arbitrary
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aHL. One can easily verify that the solution can be written
as uLðaHL; R; kFÞ ¼ �k2FgðkFaHL; kFRÞ, where g is a di-
mensionless scaling function.

In the absence of a Fermi sea or when kF ! 0, uL
satisfies the following simple equation:

ffiffiffiffiffiffiffiffiffiffi�uL
p ¼ 1

aHL
þ

e�
ffiffiffiffiffiffi�uL

p
R

R . So for a positive scattering length and R ¼ 1,

EL ¼ �@
2=2ma2HL and the light atom forms a two-body

bound state with one of the heavy atoms. However, when
R � jaHLj the bound state is severely affected by the
second heavy atom and EL ¼ �@

2�2=2mR2, even when
aHL is negative. One can also show that right at resonance,
as a result of nonlinear interference between waves coming
off the two heavy atoms, the effective scattering length for
the light atom is proportional toR, the distance between the
two heavy atoms.

Now we turn to the effect of a finite density of fermions
and focus on the resonant case where 1=aHL ¼ 0; in this
limit g is a function of kFR only. At short distances when
kFR � 1, the effective attractive potential uL ¼ ��2=R2

and is determined by the motion of a single light atom.
However, this universal behavior is completely changed
when kFR becomes order of unity or larger and the collec-
tive effect becomes important. First at kFR ¼ 0:799, the
bound state energy EL increases to zero. After this point,
EL continues to rise until it eventually reaches a maximum
and then decreases, settling into a pattern of oscillations
around a saturation value; its asymptotic behavior is

uLðkFR ! 1Þ ! u1L
�
1� coskFR

ðkFRÞ2
�
; (4)

where u1L � 0:695k2F. See Fig. 1 where details are shown
numerically. Note that @2u1L =2� is identical to the two-
body binding energy at resonance and therefore represents
the atom-dimer threshold for trimers.

To understand the Pauli blocking effect on trimers, we
adopt a k-space approach instead of employing the usual

hyperspherical coordinates [1]. The Schrödinger equation
for a three-body wave function �ðk1;k2;k3Þ is

ð�mk1
þ �Mk2

þ �Mk3
� EÞ�ðk1;k2;k3Þ

¼ �V0

ð2�Þ3
Z

dq½�ðk1 � q;k2 þ q;k3Þ

þ�ðk1 � q;k2;k3 þ qÞ�;

(5)

where k1 is the momentum of the light atom, k2 and k3 are
the momenta for the heavy atoms, and �mk1

¼ @
2k2

1=2 m,

�Mk2
¼ @

2k2
2=2 M. �ðk1;k2;k3Þ vanishes when k1 is

within the spherical Fermi surface of radius kF. Further-
more, �ðk1;k2;k3Þ ¼ �ðk1;k3;k2Þ because of the Bose
atom exchange statistics. For now we will consider the
zero-total-momentum subspace and further introduce a
wave function for one heavy atom relative to the heavy-
light dimer formed by the other two atoms:

�ADðk2Þ ¼
Z
jqj>kF

dq�ðq;k2 � q;�k2Þ:

The resulting function �ADðkÞ is shown to satisfy�ð2�Þ3
V0

þ
Z 0

dq
1

��q þ ��k � E

�
�ADðkÞ

¼ �
Z 0

dq
�ADð�q� �

mkÞ
�
�
q þ ��k � E

; (6)

where � ¼ MðMþmÞ=ð2MþmÞ is the reduced mass for
collisions between a heavy atom and a heavy-light dimer;
also ��k ¼ @

2k2=2�. Integrals
R0 are over a region defined

as j � �
Mkþ qj> kF to exclude the occupied states. When

�
m approaches 1, or in the Born-Oppenheimer approxima-

tion, we can integrate out the fast degrees of the light atom
and map the three-body problem to a simple equation for
the dimer and heavy atom:

�
2
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¼ 1

2�2

Z
q>kF

dq
�ADðq� kÞ

q2 þ k2=�2 � uB
: (7)

Equation (7) is valid for �1< uB < k2F. Here uB ¼
2�E=@2 and � ¼ ffiffiffiffiffiffiffiffiffiffi

�=�
p

which is much larger than 1 in
our case. The kinetic term (the square-root term on the left-
hand side of the equation) scales linearly as a function of k
for k � �

ffiffiffiffiffiffi
uB

p
, reflecting the composite nature of the

dimer at short distance; this peculiar structure was appre-
ciated in earlier studies on dimer-atom scattering [14,17].
One can also write down the corresponding differential
equation for the Fourier transformed wave function
�ADðrÞ ¼

R
dk�ADðkÞ expðik � rÞ. In the limit where �

is infinite, Eq. (7) for �ADðr ¼ RÞ is equivalent to Eq. (3)
for two heavy atoms at a fixed distance jRj ¼ R apart.
To obtain the spectrum flow of Efimov states, we

carry out a WKB analysis of the wave function
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FIG. 1 (color online). Effective potentials uL=k
2
F versus kFR.

From top to bottom we plot the potential for kFaHL ¼ �1, 1, 1.
At resonance, uLðRÞ ¼ ��2=R2 if the Pauli blocking effect is
absent (dashed line); the dotted line is the estimated potential
due to the scattering of trimers by the Fermi sea (see discussion
near the end of this Letter).
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�ADðrÞ ¼ exp½i�S0ðrÞ þ iS1ðrÞ� and the bound state
energies uB; the WKB approach is valid as far as

� (� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=2m

p
) is much larger than unity. By comparing

the resulting equation for S0, derived from Eq. (7), to
Eq. (3), one further establishes that S0 is a simple function

of uLðrÞ. For the S-wave channel, �ADðrÞ ¼ eiS1ðrÞ
r

sin½�R
r1
r dr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uB � uLðrÞ

p þ �� for r < r1, where r1 is the
first semiclassical turning point defined by uLðr1Þ ¼ uB
[18] and � is a phase shift calculated below. When r
approaches zero, the phase integral has a logarithmic di-
vergence for any value of kF, as seen in the hyperspherical
approach to the three-atom problem. Without losing gen-
erality, we proceed by introducing a Bethe-Peierls bound-
ary condition at r ¼ r0 to take into account a hard-core
repulsion with range r0 that is much shorter than the Fermi
wavelength 2�=kF. The quantization condition is

w

�
kFr0;

un
k2F

�
¼

Z r1

r0

dr0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
un � uLðr0Þ

q
¼ 1

�
ðn�� �Þ; (8)

where n ¼ 1; 2; 3; . . . are the indices of the eigenvalues.
Since uLðrÞ=k2F is only a function of kFr, the dimensionless
phase w is only a function of kFr0 and uB=k

2
F. � can be

obtained by applying the standard matching formulas for
the Schrödinger equation, and if there is a single turning
point we get � ¼ �=4 [19].

The simplest case is where kF ¼ 0. Then there are
infinitely many solutions that accumulate near zero energy,

and un=unþ1 ! eð2�Þ=ð��Þ as n ! 1, with e�=� � 254:5
[1,2]. For a nonzero fermion density, we introduce three
dimensionless parameters: X ¼ kFr0, Y ¼ uB=k

2
F, and

Z ¼ signðYÞ ffiffiffiffiffiffiffijYjp
X. Our results on the spectrum flow are

presented in Fig. 2 in the Z-X plane, where each eigenvalue
trajectory shows how the solution to Eq. (8) for fixed n
varies as we increase X. For fixed nonzero X, the ratio
un=unþ1 depends on n and approaches the universal value
of expð2�=��Þ only for low lying states with n much less
than NðXÞ, where NðXÞ denotes the number of Efimov
states at a given density X. Since NðXÞ is a rapidly decreas-
ing function of X, the universal value can only be attained
when X is small. As X increases, each eigenvalue increases
towards u1L , the dimer-atom threshold, eventually reaching
this value and disappearing from the spectrum; the eigen-

value trajectories terminate along the ray Z ¼ X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1L =k2F

q
in

the Z-X plane. The termination point X1
n at which the nth

eigenvalue reaches the dimer-atom threshold is given by
the solution to

wðX1
n ; Y

1Þ ¼ 1

�
ðn�� �1Þ (9)

where Y1 ¼ u1L =k2F ¼ 0:695 and �1 is the phase shift at
Y ¼ Y1.

As far asX is much less than unity, the termination points
have certain universal properties. Indeed, as X approaches
0, wðX; YÞ approaches an asymptotic form wðX; YÞ !
��logX þ vðYÞ where vðYÞ is a regular function of Y

for �1< Y < Y1. This formula yields estimates for sev-
eral quantities of interest. For example, fromEq. (8) we find

that NðXÞ ! ��
� loge

½vðY1Þ�=�
X þ �1

� as X approaches 0.

Furthermore, the termination points are X1
n �

eð1=�Þf½vðY1Þ�þð�1=�Þge�ðn�=��Þ for small X1
n , which leads to

a universal relation between different termination points:

X1
n =X

1
nþ1 ¼ e�=ð��Þ; (10)

for smallX1
n or large n, and otherwise independent of n.We

can also calculate XnðYÞ, the point at which the nth eigen-
value increases to Y, for�1< Y < Y1; we obtain a result
identical to Eq. (10) after replacing X1

n =X
1
nþ1 with

XnðYÞ=Xnþ1ðYÞ in that expression. These are the new uni-
versal properties in three-body physics when there is a
Fermi sea quantum background. Our numerical results
agreewell with theWKB results: for� ¼ 10, the difference
is within a few percent for the densities shown in Fig. 2.
These universal structures in the spectrum flow should

be robust against the scattering of trimers by the Fermi sea.
So far we have treated the Fermi sea as static or incom-
pressible, but a trimer can further collide with the Fermi
sea, exciting particle-hole pairs near the Fermi surface and
polarizing the background. One of the main effects of these
fluctuating pairs is to suppress the interspecies interactions,
as occurs in an interacting Fermi gas [20], leading to a
reduction of the Fermi-Bose dimer binding energy (esti-
mated in Ref. [21]). Following those diagrammatic calcu-
lations, in the limit of heavy Bose atoms one finds that the
dimer binding energy measured from the Fermi energy is
reduced by a factor of m=M when kFaHL is small and
negative. This can also be attributed to an effect related
to Anderson’s infrared catastrophe [22]. As a result, Y1,
which specifies the dimer-atom threshold for trimers,
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FIG. 2 (color online). A subset of eigenvalue trajectories at

resonance (aHL ¼ 1) in the Z ¼ sgnðuBÞ
ffiffiffiffiffiffiffiffiffijuBj

p
r0 versus

X ¼ kFr0 plane; the thin red trajectories are for trimers dressed
in fluctuating particle-hole pairs estimated in the leading order.
The ray Z ¼ ffiffiffiffiffiffiffi

Y1p
X (dashed line) represents the dimer-atom

threshold. The termination points along this threshold X1
n are

discussed in Eq. (10). Here � ¼ ffiffiffiffiffiffiffiffiffiffi
�=�

p ¼ 10, r0 is the hard-core
size of Bose atoms. Only Efimov states are shown, and we take
� ¼ �=4 [19].
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moves closer to unity (see Fig. 1). Y1 and vðY1Þ are now
functions of �, and these mass-ratio-dependent corrections
to the effective potential shift the flow of each eigenvalue
trajectory. However, they do not affect the universal rela-
tion between different trajectories, as Eq. (10) is indepen-
dent of Y1 and vðY1Þ; we obtain the same universal value
for X1

n =X
1
nþ1, provided X1

n is small. At densities close to
X1
n and related by Eq. (10), we anticipate distinct peak-dip

signatures in the inelastic loss spectrum similar to those
observed in Refs. [8–13].

In conclusion, we have shown that the spectrum flow of
Efimov states when the density of fermions varies is uni-
versal as far as the hard-core size of heavy Bose atoms r0 is
much shorter than the average interatomic distance. Our
results can be applied to understanding three-body states in
87Rb-6Li and 23Na-6Limixtures. It is possible to generalize
the above idea to other situations. For instance, when
applying the same approach to the case of one light boson
in resonance with two heavy Fermi atoms in the presence
of a Fermi sea, we find that because of the antiscreening
effect of background Fermi atoms, the mediated potential
uLðrÞ¼��2=r2½1�q0rsiðq0rÞ�, where q0¼�2kF=ð2�Þ2
and siðxÞ is a sine integral which oscillates and approaches
� cosx

x ð1� 2
x2
Þ when x ! 1. A similar spectrum flow can

be obtained and details will be presented elsewhere. There
are also open questions that need to be answered in the
future. One is the role of holelike configurations and
the effect of Fermi sea polarization on the three-body
spectrum [23]. Another question is what are the dynamic
consequences of these Efimov states embedded in a quan-
tum gas and how do they affect the inelastic loss spectrum
and dimer-atom or dimer-dimer elastic scattering [17]?
The eventual fate of such a quantum gas after a large
fraction of scattering atoms falls into the Efimov channel
remains unknown. A straightforward way to proceed is
perhaps to include more atoms in the Efimov channel and
extend the analysis to 4-body, 5-body, etc. [6,7]. Along that
road, quantum Monte Carlo simulations have been per-
formed to understand cluster structures of bosonic atoms
[24,25]. Similar simulations need to be performed in the
presence of background scattering atoms. This work is
supported by NSERC (Canada) and Canadian Institute
for Advanced Research.

We thank Eric Braaten, Aurel Bulgac, Chris Greene,
Yusuke Nishida, Junliang Song, and Peter Zoller for dis-
cussions on Efimov states.

Note added.—Recently, we learned that the polarization
effect has been discussed in the context of an impurity
problem [23].
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