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We study the thermophysical properties of dense helium plasmas by using quantum molecular

dynamics and orbital-free molecular dynamics simulations, where densities are considered from 400 to

800 g=cm3 and temperatures up to 800 eV. Results are presented for the equation of state. From the Kubo-

Greenwood formula, we derive the electrical conductivity and electronic thermal conductivity. In

particular, with the increase in temperature, we discuss the change in the Lorenz number, which indicates

a transition from strong coupling and degenerate state to moderate coupling and partial degeneracy regime

for dense helium.
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Pressure induced physical properties of hot dense he-
lium plasmas are of crucial interest for inertial confinement
fusion (ICF) and astrophysics [1–3]. Complete burning of a
deuterium-tritium (DT) capsule follows the fusion reaction
Dþ T ! nþ Heþ 17:6 MeV; thus, accurate knowledge
of the equation of states (EOS) and the relative transport
coefficients for helium are essential in typical ICF designs.
In the direct-drive scheme, thermal transports in ICF plas-
mas play a central role in predicting laser absorption [4],
shock timing [5], and Rayleigh-Taylor instabilities grown
at the fuel-ablator interface or at the hot spot–fuel interface
[6–8], while in the indirect-drive ICF, the efficiency of the
x-ray conversion is also determined by thermal conduction
[9]. Accurate modeling of electrical conductivity is impor-
tant for precisely determining interactions between elec-
trons and plasmas, because high-energy electron beams
have been considered to be the most suitable source for
igniting the hot spot much smaller than the dense DT core
in the fast ignitor [10]. Because of these important items
mentioned above, the EOS and electronic transport prop-
erties for hot dense helium are highly recommended to be
presented and understood. From the theoretical point of
view, various assumptions have been used to predict the
electrical conductivity and electronic thermal conductivity
for weakly coupled and strongly degenerated plasmas
[11–14]. These classic methods widely disagree at high
density and are incorrect to model nonlinear screening
caused by electronic polarization. Quantum molecular dy-
namic (QMD) simulation [15,16], which is free of adjust-
able parameters or empirical interionic potentials, has been
proven to be ideally suited for studying warm dense matter.
However, large numbers of occupied electronic states and
overlap between pseudocores limit the use of this method
at high temperatures and high densities.

In the present work, direct QMD simulations based on
plane-wave density functional theory (DFT) have been
adopted to study helium at both high temperatures and
high densities, along the 400 to 800 g=cm3 isochore and

temperatures up to 800 eV. The EOS data have been
determined for a wide range of densities and temperatures.
We apply Kubo-Greenwood formula as a starting point for
the evaluation of the dynamic conductivity �ð!Þ from
which the dc conductivity (�dc) and electronic thermal
conductivity (K) can be extracted.
We introduce the ab initio plane-wave code ABINIT

[17–19] to perform QMD simulations. A series of
volume-fixed supercells including N atoms, which are
repeated periodically throughout the space, form the ele-
ments of our calculations. After Born-Oppenheimer ap-
proximation, electrons are quantum mechanically treated
through plane-wave, finite-temperature DFT, where the
electronic states are populated according to Fermi-Dirac
distributions. The exchange-correlation functional is
determined by local density approximation (LDA) with
Teter-Pade parametrization [20], and the temperature de-
pendence of exchange-correlation functional, which is
convinced to be as small as negligible, is not taken into
account. The selection of pseudopotential approximations,
which separate core electrons from valence electrons, pre-
vents general QMD simulations from high-density region
with the convenience of saving computational cost.
Because of the density-induced overlap of the pseudo-
potential cutoff radius and delocalization of core electrons,
this frozen-core approximation only works at moderate
densities. As a consequence, a Coulombic pseudopotential
with a cutoff radius rs ¼ 0:001 a:u:, which is used to
model dense helium up to 800 g=cm3, has been built to
overcome the limitations. The plane-wave cutoff energy is
set to 200.0 a.u., because large basis set is necessary in
modelling wave functions near the core. Sufficient occupa-
tional band numbers are included in the overall calcula-
tions (the occupation down to 10�6 for electronic states are
considered). � point and 3� 3� 3 Monkhorst-Pack
scheme k points are used to sample the Brillouin zone
in molecular dynamics simulations and electronic struc-
ture calculations, respectively, because EOS (transport
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coefficients) can only be modified within 5% (15%) for the
selection of higher number of k points. A total number of
64 helium atoms are used in the cubic box. Isokinetic
ensemble is adopted in present simulations, and local
equilibrium is kept through setting the electronic (Te)
and ionic (Ti) temperatures to be equal. Each dynamics
simulation is lasted for 6000 steps, and the time steps for
the integrations of atomic motion are selected according to
different densities (temperatures) [21]. Then, EOS is aver-
aged over the subsequent 1000 step simulations.

QMD simulations have only been run for temperatures
up to 300 eV, for higher temperatures, the thermal excited
electronic states increase dramatically, and are currently
numerically intractable. For temperatures between 10 and
1000 eV, the EOS of dense helium are also obtained from
orbital-free molecular dynamic (OFMD) simulations for
comparison with the QMD results. In this scheme, orbital-
free functional is derived from the semiclassical develop-
ment of the Mermin functional [22], which leads to the
finite-temperature Thomas-Fermi expression for the ki-
netic part. OFMD simulations are numerically available
for temperatures up to 1000 eV, where QMD simulations
became prohibitive. The electronic density, which is the
only variable in OFMD simulations, is Fourier transformed
during the calculation, and numerical convergence in terms
of the mesh size has been insured for all the simulations.

Two nondimensional parameters are used to character-
ize the state of plasmas, namely, the ion-ion coupling and
the electron degeneracy parameters. The former one is
commonly defined as �ii ¼ Z�2=ðkBTaÞ, which describes
the ratio of the mean electrostatic potential energy and the
mean kinetic energy of the ions. Here, Z� is the average
ionization degree, which is equal to 2 in the present system
and a is the ionic sphere radius. The degeneracy parameter
� ¼ T=TF is the ratio of the temperature to the Fermi

temperature TF ¼ ð3=�2neÞ2=3=3. Both of the parameters
are summarized in Table I for the studied densities and
temperatures.

The accurate determination of the transport coefficients
depends on a precise description of the EOS. The

wide-range EOS are obtained from both quantum and
semiclassical molecular dynamic simulations. As have
been shown in Table I, our simulations start from strongly
coupled and highly degenerate states, then reach moderate
coupling and partial degeneracy states. To examine our
results, we also calculate the EOS of hydrogen along
80 g=cm3 isochore up to 1000 eV, and the data are
in accordance with previous theoretical predictions
[23,24], as shown in Fig. 1. Good agreements are also
shown between our QMD and OFMD results, due to the
ideal metallization of helium in the hot dense regime.
The simulated EOS along temperature for dense helium
shows systematic behavior, and smooth functions (P ¼P

Aij�
iTj), which can be simply used in hydrodynamic

simulations for hot dense helium and astrophysical appli-
cations, have been constructed (coefficients Aij have been

listed in Table II).
The linear response of hot dense helium to external

electrical field and temperature gradient can be character-
ized by the electrical and heat current densities. The key to
evaluate these linear-response transport properties is the
kinetic coefficients based on the Kubo-Greenwood formula

�̂ð�Þ ¼ 1

�

X

k;k0
jhc kjv̂jc k0 ij2�ð�k � �k0 � �Þ; (1)

where hc kjv̂jc k0 i are the velocity matrix elements, � is
the volume of the supercell, and �k are the electronic
eigenvalues. The kinetic coefficients Lij in the Chester-

Thellung version [25] are given by

L ij ¼ ð�1Þiþj
Z

d��̂ð�Þð���Þðiþj�2Þ
�
�@fð�Þ

@�

�
; (2)

TABLE I. Ion-ion coupling parameter (�ii) and electron de-
generacy parameter �.

� (g=cm3) 400 480 600 800

T (eV) �ii � �ii � �ii � �ii �

10 28.85 0.02 30.66 0.02 33.03 0.01 36.35 0.01

20 14.43 0.04 15.33 0.03 16.51 0.03 18.18 0.02

50 5.77 0.09 6.13 0.08 6.61 0.07 7.27 0.06

100 2.89 0.18 3.07 0.16 3.30 0.14 3.64 0.11

200 1.44 0.36 1.53 0.32 1.65 0.27 1.82 0.22

300 0.96 0.54 1.02 0.47 1.10 0.41 1.21 0.34

400 0.72 0.71 0.77 0.63 0.83 0.54 0.91 0.45

500 0.58 0.89 0.61 0.79 0.66 0.68 0.73 0.56

800 0.36 1.43 0.38 1.26 0.41 1.09 0.45 0.90

FIG. 1 (color online). Calculated EOS (pressure versus tem-
perature) for dense helium. The QMD and OFMD results, where
the error bars are shown by using wide and narrow caps, are
labeled as red solid circles and blue open squares, respectively.
Previous theoretical predictions obtained by Recoules et al. (up
and down triangles) [23] and Kerley (green dashed line) [24],
where the EOS of dense hydrogen along the 80 g=cm3 isochore,
are also shown for comparison.
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with � being the chemical potential and fð�Þ the Fermi-
Dirac distribution function. We obtain the electrical con-
ductivity �

� ¼ L11; (3)

and electronic thermal conductivity K is

K ¼ 1

T

�
L22 �L2

12

L11

�
; (4)

where T is the temperature. Eqs. (3) and (4) are energy-
dependent, then the electrical conductivity and electronic
thermal conductivity are obtained through extrapolating to
zero energy. Those formulation are implemented in the
ABINIT code, and have lead to good results for liquid

aluminum [26] and hot dense hydrogen [23], where
Troullier-Martins potential and Coulombic potential were
used, respectively. Within the framework of finite-
temperature DFT, chemical potential is evaluated through
fitting the set of occupation numbers corresponding to the
set of eigenvalues with the usual functional form for the
Fermi-Dirac distribution. The � function in Eq. (1) is
broaden in the calculations by a Gaussian function, which
has been tested to obtain smooth curves.

The Lorentz number L is defined as

L ¼ K

�T
¼ �

e2

k2B
: (5)

The rule of force responsible for the electronic scattering
characterizes �. From the Wiedemann-Franz law, � is
�2=3 and L is 2:44� 10�8 in the degenerate regime (low
temperature). For the nondegenerate case (high tempera-
ture), � is 1.5966 and L is 1:18� 10�8. No classical
assumptions are available for � value in the intermediate
region. As a consequence, the electronic thermal conduc-
tivity can not be deduced from the electrical conductivity
by using Wiedemann-Franz law. Direct predictions of
electrical and thermal conductivity from QMD simulations
are then rather interesting.

In order to get converged transport coefficients, ten
independent snapshots, which are selected during one mo-
lecular dynamics simulation at given conditions, are picked
up to calculate electrical conductivity and electronic ther-
mal conductivity as running averages. For temperatures
below 300 eV, atomic configurations are directly extracted
from QMD simulations, while they are taken from OFMD
simulations for higher temperatures. Let us stress here that,
one-body electronic states are populated according to a

Fermi-Dirac distribution in QMD simulations, and a large
number of occupied orbitals are introduced at high tem-
peratures. Thus this method is rather time consuming.
In Fig. 2 we plot the electrical conductivity and elec-

tronic thermal conductivity as functions of temperature.
While at relatively low temperatures up to 100 eV the
electrical conductivity changes slowly, it turns to smoothly
increase at higher temperatures. The electronic thermal
conductivity shows a sustaining increase with temperature,
as in Fig. 2 (lower panel). As temperatures arise from 10 to
800 eV, electronic thermal conductivity is of great impor-
tance in ICF applications, where these thermodynamic
conditions are encountered in the pellet target fusion. In
general ICF designs, several models are used to evaluate
thermal conductivity, such as Hubbard and Lee-More mod-
els [12,14]. Previous theoretical predictions for dense hy-
drogen have demonstrated that the electronic thermal
conductivity obtained by QMD simulations are in fairly
good agreement with the Hubbard model. For very high
temperatures, the results for Lee-More model merge into
the Spitzer thermal conductivity [11], which are accordant
with QMD simulations [23]. As a comparison, we also plot
the thermal conductivity for dense hydrogen in Fig. 2. It is
indicated that at temperatures below 200 eV, electronic
thermal conductivity for hydrogen plasma is larger than
that of helium. However, they tend to merge with each
other for higher temperatures.
Using the calculated electrical and thermal conductivity,

the Lorentz ratio is extracted and shown in Fig. 3. In
the strong coupling and degenerate region, the com-
puted Lorentz number vibrates around ideal value of
2:44� 10�8, which is predicted by the nearly free elec-
tron model. This model is valid in the case where Born
approximation is applicable because scattering of the elec-
trons by the ions is sufficiently weak. With the increase of

TABLE II. Pressure (kbar) expansion coefficients Aij in terms
of density (g=cm3) and temperature (eV).

i Ai0 Ai1 Ai2

0 26.77 2710.10 �7:02

1 10 819.04 398.98 0.08

2 69.92 �0:07 0.00

FIG. 2 (color online). Calculated electrical conductivity (upper
panels) and electronic thermal conductivity (lower panels) as
functions of temperature at four densities of 400, 480, 600, and
800 g=cm3. For comparison, electronic thermal conductivity for
dense hydrogen is also shown as red open circles.
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temperature, where dense helium enters moderate coupling
and a partial degeneracy regime, Lorenz number tends to
decrease and approach to the nondegenerate value of
1:18� 10�8.

In summary, we have performed ab initio QMD simu-
lations to study the thermophysical properties of dense
helium plasmas under extreme conditions as reached in
ICF experiments. As a result, highly converged EOS data
(pressures up to 108 kbar), for which Coulombic potential
with a very small cutoff radius is adopted to model ultra-
dense helium, have been obtained. We have constructed
smooth functions to fit the QMD data for the pressure,
which is applicable for astrophysics and ICF designs.
Using Kubo-Greenwood formula, the electrical conductiv-
ity and electronic thermal conductivity have been system-
atically determined and carefully discussed. The
examination of Lorenz number, as well as that of the
calculated plasmas parameters (Table I), has indicated a
gradual transition from a strong coupling and degenerate
state to a moderate coupling and partial degeneracy regime
for dense helium. We expect the present simulated results
provide a guiding line in the practical ICF hydrodynamical
simulations with the helium plasma participated.
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