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We present boundary-integral simulations of the evolution of critically charged droplets. For such

droplets, small perturbations are unstable and eventually lead to the formation of a lemon-shaped drop

with very sharp tips. For perfectly conducting drops, the tip forms a self-similar cone shape with a

subtended angle identical to that of a Taylor cone, and quantities such as pressure and velocity diverge in

time with power-law scaling. In contrast, when charge transport is described by a finite conductivity, we

find that small progeny drops are formed at the tips, whose size decreases as the conductivity is increased.

These small progeny drops are of nearly critical charge, and are precursors to the emission of a sustained

flow of liquid from the tips as observed in experiments of isolated charged drops.
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An isolated droplet of liquid will naturally take the form
of a sphere in order to minimize its surface area. If we now
place a net amount of electrical charge on the drop, there is
a pressure opposing the effects of surface tension due to the
repulsion of mutual charges. As first described by Lord
Rayleigh [1], a drop will become unstable to infinitesimal
perturbations from a spherical shape if the total charge Q
exceeds a critical value:

Qc ¼ 8�ð��R3Þ1=2 (1)

where R is the radius of the drop, � is the surface tension,
and � is the electrical permittivity. The simplest case, and
the one first directly observed in experiment [2,3], is that of
an isolated, evaporating droplet that evolves into a
‘‘lemon’’ shape, and high-speed jets of liquid carrying a
significant fraction of the total charge are emitted from
the tips.

The disintegration of such isolated charged drops occurs
in natural settings such as thunderstorm clouds and burst-
ing bubbles at the ocean surface [4], industrial applications
ranging from ink-jet printing to electrospraying [5], and is
especially important in mass spectrometry [6,7]. Charged
liquid drops were also used as an early model for the
mechanism of nuclear fission [8]. Nearly all previous
studies have looked solely at the oscillations around equi-
librium and the limits of stability [9–12], or operated under
the assumption of infinite conductivity [13–15]. This latter
assumption is especially important; recent numerical simu-
lations show that bulk conductivity controls the fine fluid
jets formed in applied electric fields [16]. Indeed, the
specific mode of charge conduction will affect the dynam-
ics of the jet [17]. The most popular models of charge
transport suppose bulk conduction [16,18], although recent
evidence suggests that conduction along the surface of the
drop is significant [19,20].

In this Letter, we simulate the initial instability and
eventual cone-jet formation for charged inviscid drops
with total charge Qc. We consider two separate cases.
(1) The drop is a perfect conductor. In this regime the
drop forms extremely sharp tips where quantities such as
charge density, curvature, and velocity diverge in finite
time. The tip shape is self-similar and conical, and the
subtended angle is exactly that of a Taylor cone, which
results from the curvature term being present in the asymp-
totic balance of forces. (2) The charge transport is limited
by a finite electrical conductivity. We investigate the ef-
fects of bulk and surface conduction of charge; in both
cases the limited conductivity results in the eventual emis-
sion of a progeny drop from the tip. Regardless of the
method of charge transport, the first progeny drop carries
an amount of charge just below the Rayleigh limit Qc,
which depends weakly on its size.
Numerical method.—We begin with an incompressible,

axisymmetric fluid globule immersed in an incompressible
fluid of infinite extent. The axis of rotation is the z axis and
r is the radial coordinate. Initially the droplet is at rest as a
slightly prolate ellipsoid with a major axis (z) 1.05 times
longer than the minor axis (r). The inner fluid has a density
�1 and the exterior fluid has a density �2, where the density
ratio � ¼ �2=�1. With this formulation we can consider
the effects of an exterior fluid, so that the behavior of both
bubbles and droplets can be studied, although in this Letter
we will focus solely on the case where � � 0:001. The
interface also has a uniform surface tension � and a vary-
ing surface charge density q with total charge Qc, which
guarantees that the drop will be unstable for infinitesimal
prolate perturbations [12]. The charge conduction along
the surface can be perfect so that q only depends on the
geometry of the drop, or transport properties can be speci-
fied with a bulk conductivity k or surface conductivity �.
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The flow everywhere is assumed to be inviscid and irrota-
tional (smooth and nonturbulent). As with typical free-
surface flows [21,22], our assumption of zero viscosity is
valid for length scales greater than the viscous length scale
lc ¼ �2=��, where � is the viscosity of the liquid (for
water, lc � 13 nm).

In this regime the velocity of the fluid ~v can be described

by the gradient of a scalar potential ~v ¼ ~r�, and the prob-

lem is reduced to solving Laplace’s equation ~r2
� ¼ 0

with time-dependent boundary conditions [15,23]:

�
@�

@t
þ j~vj2

2

�� ��

�
@�

@t
þ j~vj2

2

�þ ¼ 2q2 � 2�m (2)

where �m is the mean curvature and the superscripts refer
to the exterior (þ) or interior (�) side of the interface. In
Eq. (2) and all further discussions, quantities have been
made dimensionless in units of the length scale R, time

scale ðR3�1=�Þ1=2, and charge scale 2ð��R3Þ1=2 so that
critical surface charge density is equal to unity. For sim-
plicity, we also assume the electrical permittivity every-
where is equal to �.

We follow previous boundary-integral methods [23–25]
used to accurately compute the motion of the interface
between two inviscid fluids, with addition of the charge
density in Eq. (2). In our formulation there is no total bulk
charge and all excess charge resides on the surface. If the
conductivity is infinite, then the charge distribution is
purely geometry dependent and the charge will always
arrange itself so that the electric potential c is constant.
In this case we solve the fairly simple electrostatics prob-
lem of finding the surface charge distribution on a charged
axisymmetric conductor, which involves inverting an inte-
gral equation.

However, this is a special case. When the conductivity is
finite, we follow the method described in Ref. [26], with
the addition of terms accounting for surface [18] and bulk
[16,18] Ohmic conduction:

Dq

Dt
¼ 1

Pe
r2

sq� 2q�mvn þ �r2
sc þ Kð ~n � ~rc Þ� (3)

where vn is the normal velocity of the interface, rs is the
surface gradient operator, and the convective derivative

operator is D=Dt ¼ @=@tþ vn ~n � ~r. The dimensionless

number Pe ¼ ðR�=	2�Þ1=2 is the Péclet number, where
	 is the surface diffusivity. For all simulations, we use a
value of Pe ¼ 1000, so that diffusion of charge is essen-

tially negligible. The parameters K ¼ kðR3�=��2Þ1=2 and
� ¼ �ðR�=��2Þ1=2 are a measure of the bulk and surface
conductivity, respectively, and each is defined as a ratio of
time scales, tconduction=tcapillary, where the conduction time

scale depends on the mode of conduction, bulk or surface.
For our simulations, we varied K and � independently
while the other was set to zero so we could isolate the
effects of a particular transport coefficient.

Perfect conductors.—First we will consider the case of a
perfectly conducting drop. For simplicity, we ignore the
exterior fluid and choose� ¼ 0. The charge distribution is
calculated purely based on the interfacial geometry at each
time step. After the lemon shape is formed [Fig. 1(a)], the
tip continues to sharpen indefinitely: the curvature, charge
density, and fluid velocity all diverge. Figure 1(b) shows

the mean curvature �tip
m and charge density qtip at the tip as

a function of 
 ¼ t0 � t, where t0 is a parameter chosen

FIG. 1. (a) Evolution of a perfectly conducting drop from a
slightly prolate ellipsoid to the final lemon shape with pointed

cone tips. (b) Mean curvature �
tip
min and charge density qtip at the

tip as a function of 
 for an infinitely conducting droplet in a
vacuum. The inset shows the evolution of the interface into a
Taylor cone. The solid and dashed lines show power-law fits to
the data with fixed exponents. (c) Semicone angle � vs 
 for 3
different simulations. Run 2 shows the evolution in (a), while
run 1 and run 3 were created by stopping run 2 close to
the singularity (
 � 0:03), making the drop thinner or thicker,
then letting the simulation proceed. The final shapes are shown
next to the data. As 
 ! 0, the shape approaches a Taylor cone
(� � 49:3�), indicating a universal self-similar solution.
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from a power-law fit of the data, and represents the point of

divergence. The mean curvature scales as 
�2=3, and the

charge density as 
�1=3. Although not included in Fig. 1(b),
we find that the normal velocity of the interface at the tip

scales as 
�1=3. These scalings indicate that all terms in
Eq. (2) will be important for an asymptotic balance. This is
in contrast to the Coulombic fission of a viscous, perfectly
conducting droplet, where the charge density scales as

�0:5 and the curvature as 
�0:72 [13], so that the curvature
term becomes negligible as 
 ! 0 and the viscous forces
balance the electrostatic forces. Similar exponents were
also measured during the formation of a spout from an oil-
water interface in an applied electric field [27].

The power-law behavior in the dynamics suggests a self-
similar solution for the tip region. The asymptotic shape of
the tip region is that of a perfect cone, in contrast to
simulations in Ref. [15] with a much lower dynamic range
in space and time. Surprisingly, the semicone angle is
exactly equal to that of a Taylor cone, �T � 49:3�. Why
is this so? Taylor [28] assumed a steady-state solution
where the electrostatic pressure exactly balanced the cur-
vature pressure on the surface of a cone [last 2 terms in

Eq. (2)]. He showed that c / r1=2a P1=2ðcos�Þ in the far

field, where ra is the distance from the apex of the cone,
P is a Legendre polynomial, and � ¼ �� � is the obtuse
angle to the vertical [Fig. 1(c)]. For a perfect conductor c
is constant, so P1=2ðcos�Þ ¼ 0 and � ¼ �� �T . For our

dynamic case, one realizes that the velocity potential also
satisfies Laplace’s equation, and � should be of the same
form as c . Thus capillary, electric, and Bernoulli forces all
balance in the asymptotic cone shape, and the cone angle
must be �T . This solution is apparently universal, as differ-
ent initial simulation conditions all converge to the same
value for the cone angle in Fig. 1(c).

Finite conductivity.—Next we will consider the case
where the charge transport is limited by a finite electrical
conductivity. For these simulations we use a density ratio
� ¼ 0:001, corresponding to a liquid drop in an ambient
gas atmosphere. Previous experimental studies of charged
drops [19] and liquid bridges [20] suggest that both bulk
and surface conduction are important in ionic solutions due
to a diffuse layer near the surface of the liquid. We have
simulated both cases independently to elucidate the effects
that the mode of charge transport has on the drop dynam-
ics. Figure 2 shows the final shapes of the drop just before
progeny drop emission for two values of � [(a),(b)], and for
two values of K [(c),(d)]. In both cases, for large conduc-
tivities, the final shape resembles the perfect conductor,
with the addition of a tiny drop emitted from the tip. Our
simulations cannot proceed past the pinch-off of the first
progeny drop, which represents only a small fraction of the
mass and charge emitted during Coulombic fission [15].

Lower conductivities result in large progeny drops and
highly elongated drop shapes, which is due to the reduced
rate of charge transport to the pointed tips. As the tip

sharpens, the charge must move to the tip region to remain
in equilibrium. If this cannot occur quickly enough, then
the surface tension forces will act to break up elongated
structures through the Rayleigh-Plateau instability. At
the final moments of progeny drop pinch-off, the charge
density remains finite and the dynamics are governed by
the known universal solution for inviscid capillary pinch-
off [21].
Figure 3(a) shows the dependence of the progeny drop

radius Rp and charge Qp on the conductivity parameters

� and K. For bulk conduction, Rp / K�2=3 and Qp / K�1.

The progeny drop size can be understood as a balance of
the conduction time scale tconduction ¼ �=k with the local

capillary time scale tcapillary ¼ ðR3
p�=�Þ1=2. If we assume

that the progeny drop has of order the Rayleigh limit of
charge [Eq. (1)], then we obtain the K�1 scaling for Qp as

well. This argument is identical for the case of surface
conduction where Rp / ��2 and Qp / ��3, except the

conduction time scale is now defined by the surface con-
ductivity tconduction ¼ �Rp=�. Figure 3(b) shows the ratio

of Qp to the Rayleigh limit for the progeny drop

8�ð��R3
pÞ1=2. Regardless of the charge conduction mecha-

nism, this ratio only depends on the progeny drop radius
Rp, and slowly approaches unity for small drops. This

suggests that drops emitted from the tips during a
Coulombic fission process are only marginally stable,

FIG. 2 (color online). Final drop shapes at the time of progeny
drop emission for several values of the dimensionless surface
conductivity � and bulk conductivity K. The drop is surrounded
by dilute vapor (� ¼ 0:001). The initial evolution of the shapes
is similar to the infinite conductivity case [Fig. 1(a)]. Lower
values of � as seen in (b), or K as seen in (d), lead to more
elongated drops and larger progeny drops because the charge
moves more slowly. The insets are zoomed-in images of the tip.
The specific mode of charge conduction determines the shape of
the drop and tip prior to emission.
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and would be subject to further fission given a sufficient
perturbation [11,12].

Conclusion.—For the first time, we provide a quantita-
tive picture which shows how charge conduction controls
the shape and eventual emission of progeny drops during
Coulombic fission of inviscid drops. For perfectly conduct-
ing drops, a self-similar cone shape is formed with an angle
of � 49:3�, identical to Taylor’s steady-state value.
Although our simulations are dynamic and the pressure
and velocity are diverging at the tip of the cone, this angle
can be understood solely by the presence of the mean
curvature in the asymptotic balance of forces. When the
charge transport is limited by a finite surface or bulk
conductivity, a small progeny drop is emitted from the
tip of the cone, a precursor to the tip-jetting observed in
experiments. The drop size and charge are determined by a
ratio of the conduction time scale to the capillary time

scale, and the progeny drop is nearly unstable and may
undergo further Coulomb fission.
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