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Using an extended Nambu–Jona-Lasinio model as a low-energy effective model of QCD, we show that

the vacuum in a strong external magnetic field (stronger than 1016 T) experiences a spontaneous phase

transition to an electromagnetically superconducting state. The unexpected superconductivity of, basi-

cally, empty space is induced by emergence of quark-antiquark vector condensates with quantum numbers

of electrically charged rho mesons. The superconducting phase possesses an anisotropic inhomogeneous

structure similar to a periodic Abrikosov lattice in a type-II superconductor. The superconducting vacuum

is made of a new type of vortices which are topological defects in the charged vector condensates. The

superconductivity is realized along the axis of the magnetic field only. We argue that this effect is absent in

pure QED.
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Strong magnetic fields may lead to unusual effects such
as magnetic catalysis in the (2þ 1)-dimensional Gross-
Neveu (GN) model [1,2], in QED [3], and in QCD [4]. The
strong field supports the chiral magnetic effect in hot
quark-gluon plasma [5] and a metalliclike conductivity in
a quarkless vacuum of lattice SUð2Þ Yang-Mills theory [6].
Recently, we suggested in Ref. [7] that an interplay be-
tween strong and electromagnetic interactions in a back-
ground of a sufficiently strong magnetic field may turn the
cold vacuum into an electromagnetic superconductor if the
strength of the magnetic field exceeds

Bc ¼ m2
�=e � 1016 T; (1)

where m� ¼ 775:5 MeV is the mass of the � meson and e

is the elementary electric charge. Magnetic fields of such
strength scale may emerge in the heavy-ion collisions at
the Large Hadron Collider in CERN [8] and, presumably,
in the early Universe.

Our idea is based on a very simple argument: the particle
spectrum of QCD contains a charged vector resonance (a
spin-triplet excitation), �� meson, which has a large mag-
netic dipole moment associated with an anomalous gyro-
magnetic ratio g ¼ 2 of the � meson. If one treats the �
meson as a free particle, then in a background of a uniform
magnetic field B its ground state energy [corresponding to
the lowest Landau level (LLL)] becomes a decreasing
function of the magnetic field strength, E2

��ðBÞ ¼ m2
�� �

eB. The energy of �� vanishes when the magnetic field
reaches the value (1). As the field strength increases fur-
ther, the ground state energy E�� becomes purely imagi-

nary, indicating a tachyonic instability of the ground state
towards condensation of the � mesons. Since �� are
electrically charged, their condensation implies an electro-
magnetic superconductivity of the new ground state.

Surprisingly, there is no Meissner effect in the g ¼ 2
case. Moreover, the strong magnetic field makes the �
mesons stable at QCD time scales [7].
The suggested vacuum superconductivity has at least

two other analogues in particle physics: the Nielsen-
Olesen instability of the gluonic vacuum in Yang-Mills
theory [9] and the Ambjørn-Olesen condensation of the
W bosons induced by a strong magnetic field in the stan-
dard electroweak model [10].
In condensed matter physics, a similar phenomenon is

known as ‘‘reentrant’’ superconductivity [11]. Usually, an
external magnetic field suppresses the superconductivity
via pair breaking effects, so that in a strong magnetic field
the superconductivity is lost. However, there are super-
conductors which may reenter the superconducting phase
again at stronger magnetic fields, like, for example, in the
uranium compound URhGe [12].
There are various material-dependent proposals to de-

scribe specific reentrant superconductors in the condensed
matter physics. Our suggestion in QCD [7] is close to the
idea of Refs. [11,13] that in a very strong magnetic field the
Abrikosov flux lattice of a type-II superconductor may
exhibit a reentrant quantum regime, characterized by the
LLL dominance and the absence of the Meissner effect.
In Ref. [7] we suggested the existence of the new super-

conducting phase using effective bosonic electrodynamics
of the � mesons of Ref. [14]. However, this model treats
the � mesons as pointlike particles, and thus it may be
inapplicable at strong magnetic fields (1) when the mag-
netic length becomes of the order of the size of the �
meson. Here we use the much more general fermionic
Nambu–Jona-Lasinio (NJL) model [15] as a low-energy
effective theory of QCD in order to show the existence of
the electromagnetic superconductivity induced by the
strong magnetic fields in the vacuum.
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We consider an extended two-flavor (Nf ¼ 2)

Nambu–Jona-Lasinio model with three colors (Nc ¼ 3):

L ðc ; �c Þ ¼ �c ði@þ Q̂ 6A� M̂0Þc þLð4Þ
S þLð4Þ

V ; (2)

where the light quarks are represented by the doublet c ¼
ðu; dÞT and M̂0 ¼ diagðm0

u; m
0
dÞ is the corresponding bare

mass matrix [16]. The uniform magnetic field background
~B ¼ ð0; 0; BÞ is encoded in the Abelian gauge fieldA� �
ðA0; ~AÞ ¼ ð0;�Bx2=2; Bx1=2; 0Þ, and the electric
charges of the quarks, qu ¼ þ2e=3 and qd ¼ �e=3, are

combined into the matrix Q̂ ¼ diagðqu; qdÞ. The hat over a
symbol indicates a 2� 2 matrix in the flavor space.

The last two terms in Eq. (2) represent the scalar and
vector four-quark interactions, respectively:

L ð4Þ
S ¼ Gð0Þ

S

2
½ð �c c Þ2 þ ð �c i�5 ~�c Þ2�; (3)

L ð4Þ
V ¼ �Gð0Þ

V

2

X3
i¼0

½ð �c���
ic Þ2 þ ð �c���5�

ic Þ2�; (4)

where Gð0Þ
S and Gð0Þ

V are corresponding bare couplings, and

~� ¼ ð�1; �2; �3Þ are the Pauli matrices
We follow the standard approach [16] and introduce the

following bosonic fields corresponding to the quark-
antiquark bilinears: one scalar field �� �c c , the triplet
of three pseudoscalar fields ~�� �c�5 ~�c [made of the
electrically neutral, �0 � �3, and electrically charged,

�� ¼ ð�1 � i�2Þ= ffiffiffi
2

p
, pions], four vector fields Vi

� �
�c���

ic , and four axial fields Ai
� � �c�5���

ic ,

V̂ � � X3
i¼0

�iVi
� ¼ !� þ �0

�

ffiffiffi
2

p
�þ
�ffiffiffi

2
p

��
� !� � �0

�

 !
; (5)

Â � � X3
i¼0

�iAi
� ¼ f� þ a0�

ffiffiffi
2

p
aþ�ffiffiffi

2
p

a�� f� � a0�

 !
: (6)

The vector-meson matrix (5) is composed of the singlet
(in the flavor space) vector (in the coordinate space)

!-meson field !�, while �0
� � �3

� and ��
� ¼ ð�1

� �
i�2

�Þ=
ffiffiffi
2

p
represent, respectively, electrically neutral and

charged components of the �-meson triplet. The light axial
mesons are encoded in the matrix (6): the fields f� and

ða0�; a��Þ represent, respectively, the singlet axial f1 meson

and the ~a1 triplet of the axial mesons, respectively.
We rewrite the four-quark interactions (3) and (4) via

Gaussian integrals over the bosonic fields �, ~�, V̂�, Â�,

and integrate over the quarks in the partition function:

Z ¼
Z

D �cDc ei
R

d4xL ¼
Z

D�D�DVDAeiS½�; ~�;V;A�;

where the effective bosonic action S ¼ S½�; ~�; V; A� is
S ¼ Sc þ

Z
d4x

�
� 1

2Gð0Þ
S

ð�2 þ ~�2Þ

þ 1

2Gð0Þ
V

ðVk
�V

k� þ Ak
�A

k�Þ
�
; (7)

Sc ¼ �iNc Tr lnðiDÞ; (8)

iD ¼ i@þ Q̂ 6A� M̂0 þ V̂6 � þ �5 ^6A� ð�þ i�5 ~� ~�Þ:
(9)

Next, we calculate the effective action (7) in the strong
magnetic field background in the mean field approach. We
use simplified notations for the expectation values of the
fields, h�i ¼ �, etc. In the absence of the external mag-
netic field the expectation values of the fields ~�, V, and A
are zero [16], while the expectation value of � plays a role
of the constituent quark mass, mq ¼ �� 300 MeV.

In order to simplify our calculations, we notice that the
presence of the external magnetic field breaks the flavor
symmetry down to its diagonal subgroup, so that the di-

agonal chiral rotations � ¼ ei�5�
3�5 can still be used to

eliminate the neutral pion condensate �0. We also neglect
the mass matrix M0 because m0

u;d 	 �.

The operator (9) can be represented as the sum iD ¼
iD0 þ Ŵ of the tree-level operator iD0 ¼ i@þ Q̂ 6A� �

and the contribution Ŵ from the ‘‘exotic’’ condensates,

Ŵ ¼ V̂6 � þ �5 ^6A� i�5ð�1�1 þ �2�2Þ; (10)

At low magnetic fields Ŵ � hŴi ¼ 0. Let us assume
that, at a certain strong magnetic field B ¼ BNJL

c , the
expectation value of the condensate (10) is nonzero. Let
us advance slightly into the new phase taking B * BNJL

c , so
that the magnitude of the suspected condensate is still

small, 0< jŴj 	 �. Then the effective action (7) can be

expanded in powers of the Ŵ field, and the fact of the
emergence of the new condensate should be seen as a

tachyonic instability of the effective potential at Ŵ ¼ 0.

The tree-level propagator Sð0Þ � D�1
0 of the fermion

doublet in the strong magnetic field has the following

form: Sð0Þðx; yÞ ¼ diag½Sð0Þu ðx; yÞ; Sð0Þd ðx; yÞ�, where Sf is

the propagator of the fth quark species.
The �-meson condensation and, consequently, the in-

duced superconductivity are the LLL phenomena [7].
Thus, it is natural to restrict ourselves to the LLL approxi-
mation which usually gives a dominant contribution to
nonperturbative low-energy quantities in the limit of the
strong magnetic field [3,4,17].

In the LLL regime the propagator Sð0Þf factorizes into

the B-transverse and B-longitudinal parts which depend,
separately, on the B-transverse, x? ¼ ðx1; x2Þ, and

B-longitudinal, xk ¼ ðx0; x3Þ, coordinates [3]:
Sð0Þ;LLLf ðx; yÞ ¼ P?

f ðx?; y?ÞSkfðxk � ykÞ (11)

[below we omit the superscripts ‘‘(0)’’ and ‘‘LLL’’]. Here,

P?
f ðx?; y?Þ ¼

jqfBj
2�

eði=2ÞqfB"abxaxb�ð1=4ÞjqfBjðx?�y?Þ2 (12)

is the transverse projector onto the LLL states and qf is the

electric charge of the fth quark.
The longitudinal part of the fermion propagator (11),

Skf � SksgnðqfBÞ, is, basically, a fermion propagator in the
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1þ 1 dimensions (we always take eB > 0),

SkfðkkÞ ¼
i

�kkk �m
Pk
f; Pk

f ¼
1� if�1�2

2
; (13)

and the matrix Pk
f (we use f ¼ �1 for, respectively, f ¼

u; d) is the spin projector operator onto the fermion states
with the spin polarized along (for u quarks) or opposite (for

d quarks) to the magnetic field. The operator Pk
f projects

the original four 3þ 1 fermionic states onto two (1þ 1)-
dimensional fermionic states, so that fermions can move
only along the axis of the magnetic field. The projector (12)
satisfies the relation P?

f 
 P?
f ¼ P?

f , where ‘‘
’’ is the

convolution operator in the B-transverse space, A 
 B �R
d2y?Að. . . ; y?ÞBðy?; . . .Þ.
For a coordinate-independent condensate �, the zero-

order (in powers of Ŵ) contribution to the effective action

(8) gives us the potential Vð�Þ ¼ Vð0Þ
c ð�Þ þ �2=ð2Gð0Þ

S Þ
related to the action as S ¼ �R

d4xV, with

Vð0Þ
c ¼ iNc Tr lniD0 ¼ jeBjNc

8�2

�
�2 ln

�2

�2
�
�
1

��
þ 1

�
�2

�
;

where 1= �� ¼ 1=�� �E þ log4�, �E � 0:577 22 is
Euler’s constant, and � is a renormalization mass scale.
In order to regularize the divergent contributions of the
(1þ 1)-dimensional fermions, we implemented the di-
mensional regularization in d ¼ 2� 2� dimensions. The

renormalization of the NJL coupling constant in the MS

scheme, 1=GS ¼ 1=Gð0Þ
S � NcjeBj=ð4�2 ��Þ, resembles the

renormalization of the (1þ 1)-dimensional GN model [1]
with the identification GS � 2�GGN=ðNcjeBjÞ [3].

The minimum � ¼ �min of the renormalized potential,

Vð�Þ ¼ 1

2GS

�2 þ jeBjNc

8�2

�
ln
�2

�2
� 1

�
�2;

provides us with the B-dependent quark mass

mqðBÞ ¼ �minðBÞ ¼ � expf�2�2=ðGSNcjeBjÞg: (14)

In the LLL approximation to the NJL model the scale � is
not fixed as it is related to the B-longitudinal 1þ 1 motion
of the quarks. Beyond the LLL approach the scale may
perhaps be set as �2 / jeBj following Ref. [4].

The effective bosonic model [7] suggests that the pos-
sible superconducting ground state should exhibit an in-
homogeneous behavior in the B-transverse plane. Thus, we
assume that the exotic condensates may be x? dependent,

Ŵ ¼ Ŵðx?Þ, and calculate the corresponding quadratic
contribution to the effective action (8),

Sð2Þc ¼ �
Z

d4xVð2Þ
c ¼ iNc

2
Tr

1

iD0

W
1

iD0

W: (15)

We find that the potential (15) involves only the
B-transverse components of the vector and axial mesons,

Z
d2x?Vð2Þ

c ¼ � 4NcjeBj
9�2

��
1

��
� ln

�2

�2

�
ð	� 
 Pe 
	Þ

þ
�
1

��
� ln

�2

�2
� 2

�
ð
� 
 Pe 
 
Þ

�
; (16)

where 	 ¼ ð�þ
1 þ i�þ

2 Þ=2 and 
 ¼ ðaþ1 þ iaþ2 Þ=2. The
B-transverse projector for the unit charged particle,
P?
e ðx?; y?Þ ¼ ð9�=jeBjÞP?

u ðx?; y?ÞP?
d ðy?; x?Þ, is given

by Eq. (12) with the replacement qf ! e.

The unstable tachyonic mode of the potential (7) and
(16) turns out to be an inhomogeneous eigenstate of the
charge-1 projection operator Pe,

ðPe 
	Þðx?Þ ¼ 	ðx?Þ: (17)

The solution is a general Abrikosov-like configuration [18]

	 ¼ 	0Kð�z=LBÞ; LB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=jeBj

q
; (18)

KðzÞ ¼ e�ð�=2Þðjzj2þz2Þ Xþ1

n¼�1
cne

��n2þ2�nz; (19)

where	0 and cn are arbitrary complex parameters and z ¼
x1 þ ix2 (and similarly for the axial vector field 
).
The solution (18) represents a (periodic) flux-tube struc-

ture similar to the Abrikosov lattice which is realized in a
mixed state of a type-II superconductor subjected to a near-
critical external magnetic field [18]. Generally, the coef-
ficients cn can be fine-tuned by a complicated minimiza-
tion procedure if the full potential is known [18]. Here we
follow Refs. [7,10] and set cn ¼ 1 so that the solution (18)
represents a square lattice with the quantized area
2�=jeBj � L2

B given by the magnetic length LB.
The quadratic potential, evaluated at the solution (18),

Vð2Þ ¼ ffiffiffi
2

p �
1

GB

ðj	0j2 þ j
0j2Þ � 2NcjeBj
9�2

ðj	0j2 � j
0j2Þ
�
;

is unstable towards a spontaneous creation of the
B-transverse �� condensates with the tachyonic mode
�þ
1 ¼ i�þ

2 ¼ 	 if the magnetic field exceeds

BNJL
c ¼ 9�2

2eNcGB

;
1

GB

¼ 1

GV

� 8

9GS

; (20)

with 1=GV ¼ 1=Gð0Þ
V � NcjeBj=ð9�2�0Þ and 1=�0 �

1=�� 1. Since the phenomenological values of the pa-
rameters GS;V vary in a broad region [19], we can only

give an approximate estimation of the critical field: eBc �
1 GeV2 or Bc � 1016 T.
The quartic correction to the potential in Eq. (8),

Vð4Þ
c ¼ C0

jeBjNc

2�2m2
j	0j4; (21)

allows us to find the condensate at B � BNJL
c :

	0ðBÞ ¼ ei�0C	mqðBÞð1� BNJL
c =BÞ1=2; (22)

where �0 is a constant phase, C0 � 1:2, C	 � 0:51, and

the quark mass mq is given in Eq. (14). At B< BNJL
c the

condensate (22) is zero. The phase transition at B ¼ Bc is
of the second order with the critical exponent 1=2.
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Thus, the magnetic field induces the quark condensate

h �u�1di¼�ih �u�2di¼�0ðBÞK
�
x1þ ix2

LB

�
��ðx?Þ; (23)

where �0ðBÞ ¼ 	0ðBÞ=GV . Using known (see, e.g.,
Ref. [18]) general properties of the function KðzÞ,
Eq. (19), we conclude that the ground state should be given
by a periodic (in general) lattice of a new type of topologi-
cal vortices which are parallel to the magnetic field. The
phase of the condensate (23) winds around the center of
each vortex where the absolute value of �ðx?Þ vanishes.

The condensate (23) breaks the local Uð1Þe:m: transfor-
mations by locking them with the global Oð2Þrot rotations
of the coordinate space about the magnetic field axis
[7,20]: Uð1Þe:m: �Oð2Þrot ! Glat, where Glat is a discrete
symmetry group of rotations of the �-vortex lattice.

The new vacuum state is superconducting. One can
show that there is no B-transverse current, J1 ¼ J2 ¼ 0,
so that the electric current flows along the magnetic field

axis only. In a very weak (test) electric field ~E ¼ ð0; 0; EzÞ
with Ez 	 B, the induced electric current in the new
vacuum state (23) in a linear-response approximation is
(we use the retarded Green functions)

J�ðxÞ ¼ X
f¼u;d

qfh �c f�
�c fi � �Tr½��Q̂Sðx; xÞ�: (24)

We average the current (24) over the B-transverse plane
and, in the leading order in powers of �, we get

@Q
@z

þ @J
@t

¼ 2Cq

ð2�Þ3 e
3ðB� BNJL

c ÞEz; (25)

where Q is the plane-averaged electric charge density J0,
J is the plane-averaged current Jz, and Cq � 1 [21]. At

B< Bc the right-hand side of Eq. (25) is zero. Apart from
prefactors, the transport laws in the NJL model (25) and in
the �-meson electrodynamics [7] are identical.

The linear-response law (25) can be rewritten in a

Lorentz-covariant form, @½�;J�� ¼ �  ðF; ~FÞ ~F��, via the

invariants ðF; ~FÞ ¼ 4ð ~B; ~EÞ and ðF; FÞ ¼ 2ð ~B2 � ~E2Þ. Here
~F�� ¼ ����F

�=2 and � is a function of ðF;FÞ [20].
Equation (25) is a London equation for an anisotropic

superconductivity. Thus, we have just shown that the
strong magnetic field induces the new electromagnetically
superconducting phase of the vacuum if B> Bc. An empty
space becomes an anisotropic superconductor.

The superconductivity of the vacuum is a new effect
which is realized at the QCD-QED interface. This mecha-
nism should not work in the pure QED since electrically
charged spin-1 bound states are absent there.

On general grounds one can expect that increase in
temperature T (which, in general, should be of a hadronic
scale) should lead to an evaporation of the � condensate
with a loss of the superconductivity. The suggested low-T
part of the B-T phase diagram is shown in Fig. 1.
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M. Rasolt, and L. Xing, ibid. 63, 2425 (1989).

[14] D. Djukanovic, M. R. Schindler, J. Gegelia, and S.
Scherer, Phys. Rev. Lett. 95, 012001 (2005).

[15] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345
(1961).

[16] D. Ebert and H. Reinhardt, Nucl. Phys. B271, 188 (1986).
[17] N. Sadooghi and A. J. Salim, Phys. Rev. D 74, 085032

(2006); S. Fayazbakhsh and N. Sadooghi, ibid. 82, 045010
(2010).

[18] A. A. Abrikosov, Fundamentals of the Theory of Metals
(North-Holland, Amsterdam, 1988).

[19] See, e.g., V. Bernard et al., Ann. Phys. (N.Y.) 249, 499
(1996).

[20] M.N. Chernodub, arXiv:1011.2658.
[21] The presence of the derivatives in the left-hand side of the

(1þ 1)-dimensional Eq. (25) allows us to bypass the LLL
anomaly problem found in E. V. Gorbar, M. Hashimoto,
and V.A. Miransky, Phys. Lett. B 611, 207 (2005).

             Phase of
  electromagnetic
superconductivity

Superconducting transition

B Bc
0

Hadronic phaseT 

FIG. 1. Low-temperature part of the QCD phase diagram.

PRL 106, 142003 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
8 APRIL 2011

142003-4

http://dx.doi.org/10.1103/PhysRevD.10.3235
http://dx.doi.org/10.1007/BF01566663
http://dx.doi.org/10.1103/PhysRevLett.73.3499
http://dx.doi.org/10.1103/PhysRevLett.73.3499
http://dx.doi.org/10.1016/0550-3213(96)00021-1
http://dx.doi.org/10.1103/PhysRevD.66.045006
http://dx.doi.org/10.1103/PhysRevD.66.045006
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1103/PhysRevLett.105.132001
http://dx.doi.org/10.1103/PhysRevLett.105.132001
http://dx.doi.org/10.1103/PhysRevD.82.085011
http://dx.doi.org/10.1142/S0217751X09047570
http://dx.doi.org/10.1142/S0217751X09047570
http://dx.doi.org/10.1016/0550-3213(78)90377-2
http://dx.doi.org/10.1016/0550-3213(78)90377-2
http://dx.doi.org/10.1016/0550-3213(89)90004-7
http://dx.doi.org/10.1016/0550-3213(90)90307-Y
http://dx.doi.org/10.1016/0370-2693(89)90476-0
http://dx.doi.org/10.1103/RevModPhys.64.709
http://dx.doi.org/10.1103/RevModPhys.64.709
http://dx.doi.org/10.1126/science.1115498
http://dx.doi.org/10.1126/science.1115498
http://dx.doi.org/10.1143/JPSJ.78.113709
http://dx.doi.org/10.1143/JPSJ.78.113709
http://arXiv.org/abs/1012.1987
http://dx.doi.org/10.1103/PhysRevLett.58.1482
http://dx.doi.org/10.1103/PhysRevLett.63.2425
http://dx.doi.org/10.1103/PhysRevLett.95.012001
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1016/0550-3213(86)90359-7
http://dx.doi.org/10.1103/PhysRevD.74.085032
http://dx.doi.org/10.1103/PhysRevD.74.085032
http://dx.doi.org/10.1103/PhysRevD.82.045010
http://dx.doi.org/10.1103/PhysRevD.82.045010
http://dx.doi.org/10.1006/aphy.1996.0081
http://dx.doi.org/10.1006/aphy.1996.0081
http://arXiv.org/abs/1011.2658
http://dx.doi.org/10.1016/j.physletb.2005.02.018

