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We consider landscape models that admit several regions where the conditions for eternal inflation hold.

It is shown that one can use the no-boundary wave function to calculate small departures from homogeneity

within our past light cone despite the possibility of much larger fluctuations on super horizon scales. The

dominant contribution comes from the history exiting eternal inflation at the lowest value of the potential.

In a class of landscape models this predicts a tensor to scalar ratio of about 10%. In this way the no-

boundary wave function defines a measure for the prediction of local cosmological observations.
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The string landscape is thought to contain a vast number
of vacua, including some that have four large dimensions,
our small positive value of the cosmological constant, and
the standard model. But the landscape does not explain
which vacuum in this class we are in. For that one has to
turn to cosmology and to a theory of the quantum state of
the Universe.

A quantum state specifies amplitudes for different ge-
ometry and field configurations on a spacelike surface. We
have shown that the no-boundary wave function (NBWF)
[1] in the saddle point approximation predicts a large
amplitude for configurations that behave classically when
the Universe is large and have an early period of inflation
[2]. The NBWF thus acts as a vacuum selection principle in
the class described above, selecting regions in field space
where the landscape potential admits one or more direc-
tions of inflation. The landscape then essentially becomes
an ensemble of different models of inflation, weighted by
NBWF probabilities. For the rest of this Letter we assume
this ensemble.

We are interested in the probabilities predicted by the
NBWF for observables in our Hubble volume such as those
of the cosmic microwave background (CMB). As observ-
ers we are physical systems within the Universe that are
described by local dataD that include a specification of our
observational situation. The data D may occur in any
Hubble volume with a small probability pEðDÞ. Prob-
abilities for our observations are NBWF probabilities con-
ditioned on the requirement that at least that part of our
data specifying the observational situation exist some-
where in the Universe. We call these conditional probabil-
ities top-down (TD) probabilities to distinguish them from
bottom-up (BU) probabilities conditioned only on the
NBWF [3,4].

We will find that significant contributions to TD proba-
bilities come only from landscape regions that admit a
regime of eternal inflation where V > �. Further it turns

out that the dominant contribution to TD probabilities
comes from the region(s) where the threshold for eternal
inflation lies at the lowest value of the potential, indepen-
dently of its shape above this value.
In the usual approach to eternal inflation it is argued the

Universe develops large inhomogeneities that lead to a
mosaic structure on superhorizon scales, consisting of
(possibly infinitely many) nearly homogeneous patches
separated by inflating regions [5]. The probability distri-
butions for local observables can be different in different
homogeneous patches, each of which itself can become
arbitrarily large. This has led to a challenge, known as the
measure problem, for the prediction of local observations
in one Hubble volume. To resolve this a cutoff is imposed
on the spacetime in order to regulate infinities. The ex-
pected number of Hubble volumes of different kinds can
then be calculated and used to define the probabilities for
the observations of a typical observer.
A very different approach to eternal inflation is based on

the measure defined by the Universe’s quantum state.
This Letter builds on a series (e.g., [2,6]) in which we
have investigated the implications of the no-boundary
quantum state measure. The semiclassical NBWF does
not predict a single classical spacetime. Rather it predicts
BU probabilities for an ensemble of alternative spacetimes.
In models of eternal inflation the TD probabilities for large
long-wavelength perturbations are high [6]. However, in
contrast to the usual approach, we find that the very large
scale structure of the eternally inflating histories in the
ensemble is irrelevant for the probabilities of observables
in our Hubble volume. The latter depend only on alterna-
tives in our past light cone. To calculate the probabilities
of different configurations inside one Hubble volume,
one sums (coarse grains) over everything outside the
past light cone. This results in well-defined probabilities
for observations without the need for further ad hoc
regularization.
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No-boundary measure. A quantum state of the
Universe is specified by a wave function � on the super-
space of geometries [hijðxÞ] and matter field configurations

[�ðxÞ] on a closed spacelike three-surface �. Schema-
tically we write� ¼ �½h; ��. We assume the no-boundary
wave function as a model of this state [1]. The NBWF is
given by a sum over histories of geometry g and fields� on
a four-manifold with one boundary �. The contributing
histories match the values (h; �) on � and are otherwise
regular. They are weighted by expð�I=@Þ where I½g;�� is
the Euclidean action.

In some regions of superspace the path integral can be
approximated by the method of steepest descents. Then the
NBWF will be approximately given by a sum of terms of
the form

�½h; �� � expfð�IR½h; �� þ iS½h; ��Þ=@g; (1)

one term for each complex extremum. Here IR½h; �� and
�S½h; �� are the real and imaginary parts of the Euclidean
action, evaluated at the extremum.

When the surfaces � are three spheres of radius a with
a2Vð�Þ< 1, where V is the potential of the scalar matter
fields, there is an approximately real Euclidean solution of
the field equations, and S � 0. For large radii a, however,
there are only complex solutions, and the wave function
oscillates rapidly. When S varies rapidly compared to IR
(as measured by quantitative classicality conditions [2]),
the NBWF predicts that the geometry and fields behave
classically. The NBWF can then be viewed as predicting a
family of classical Lorentzian histories that are the integral
curves of S and have probabilities to leading order in @ that
are proportional to exp½�2IRðh; �Þ�=@�, which is constant
along the integral curve.

In [2,6] we evaluated the semiclassical NBWF for a
model consisting of a single scalar field moving in a qua-
dratic potential. We found that for large radii a the NBWF
predicts a family of alternative Lorentzian Friedmann-
Lemaı̂tre-Robertson-Walker universes with Gaussian per-
turbations. The alternative histories can be labeled by the
absolute values of the perturbations �0 and of the back-
ground scalar field �0 at the ‘‘south pole’’ (SP) of the
corresponding saddle point. Classicality requires �0 * 1
(in Planck units). The relative BU probabilities of the alter-
native configurations follow approximately from

IRð�0Þ � ��=4Vð�0Þ (2)

together with the Gaussian probabilities for fluctuations.
The NBWF has the striking property that all saddle point

histories undergo some amount of matter driven slow roll
inflation, with a number of e-folds Nð�0Þ � 3�2

0=2. The
NBWF therefore selects inflationary classical histories.
These exhibit the usual Gaussian spectrum of fluctuation
modes �q with expected amplitude �2q � ð�2=4ÞðH2=�Þexit,
where � � _�2=H2 and the amplitude is evaluated when
the perturbations exit the horizon. Hence saddle points
starting below the threshold of eternal inflation are nearly

homogeneous. By contrast, in regions of the landscape
where the condition for eternal inflation V > � is satis-
fied—which means the scalar fields are effectively in a
de Sitter background—the probabilities are high for sig-
nificant perturbations on large scales.
Assuming this holds generally, only configurations that

emerge from regions of the landscape that admit infla-
tionary solutions will have significant probability. One
expects different inflationary patches of a landscape poten-
tial are separated by large potential barriers. Hence the
NBWF acts as a vacuum selection principle in the land-
scape which becomes an ensemble of models of inflation,
weighted by their no-boundary probabilities.
We now seek to calculate the relative contributions of

the different inflationary regions in field space to the TD
probabilities for local observations in our Hubble volume.
Probabilities for observations. Top-down weight-

ing.—Our observations are confined to one Hubble volume
and our data D occur with only a very small probability
pEðDÞ in any Hubble volume on a constant density surface
�sðD;�0; �0Þ. TD probabilities for local observables O
take this observational situation in account by weighting
the BU probabilities by the probability that D exists some-
where on the surface. We showed in [4] that this weighting
is given by a multiplicative factor

1� ½1� pEðDÞ�Nh � 1: (3)

Here, Nh is the total number of Hubble volumes in �s.
When Nh is sufficiently small so that our data are rare, the
TD factor is very small and reduces to weighting the BU
probabilities by the volume of�s [7,8]. We have argued [4]
this is the case in saddle point histories that start below
the threshold of eternal inflation, which predict high am-
plitudes for nearly homogeneous final configurations with
(3) proportional to e3N .
By contrast, saddle points in the regime of eternal in-

flation predict high amplitudes for configurations that have
large long-wavelength perturbations [6]. The volume of
�sðD;�0; �0Þ of these perturbed configurations can be
exceedingly large or even infinite [9] so that the probability
that D exists somewhere (3) is nearly one [10].
The TD weighting has a significant effect on the BU

distributions in models that admit a regime of eternal
inflation. The NBWF BU probabilities favor histories start-
ing at a low value of the potential followed by only a few
e-folds of slow roll inflation [cf. (2)]. However, the TD
weighting (3) suppresses the probabilities for such histor-
ies, and instead favors saddle points starting in the regime
of eternal inflation. In models of eternal inflation, the low
BU probability of histories starting above the threshold of
eternal inflation is compensated by the large number of
Hubble volumes in the resulting surfaces �s. Once regions
in field space for which the condition for eternal inflation
holds have been selected, the probabilities of local obser-
vations are given by their bottom-up values. It remains to
estimate the latter.
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Cosmic no hair.—For observations we only need the
NBWF probabilities for fluctuations in our Hubble volume
located somewhere on the reheating surface �s. That sur-
face will be very large and inhomogeneous as a conse-
quence of fluctuations that left the horizon during eternal
inflation. The cosmic no hair theorems imply that predic-
tions on the scales of a Hubble volume will be independent
of the detailed large scale structure of �s provided that
there are a sufficient number of e-folds after the exit from
eternal inflation. Rather, the predictions on Hubble volume
scales are the same as in a homogeneous universe per-
turbed by small fluctuations.

Usual derivations of cosmic no-hair results assume the
Bunch-Davies vacuum for subhorizon modes at the start of
inflation. That assumption is replaced here by the NBWF.
Its predictions for fluctuations on Hubble volume scales
were calculated for ð1=2Þm2�2 potentials in [6]. Further,
for realistic values of m the NBWF histories have the
necessary large number of e-folds (� 1=mÞ after exit
from eternal inflation.

Coarse graining.—These results can be derived explic-
itly from the NBWF by coarse graining. A wave function
�½h; ��, and the histories constructed from it, specify
probabilities for alternatives all across a spacelike surface,
to its future, and to its past. Probabilities for observablesO
in our Hubble volume are obtained by summing the NBWF
probabilities over alternatives off that surface and outside
that Hubble volume. This is coarse graining.

Causality implies that the probabilities of observations
in our Hubble volume can depend only on alternatives in
our past light cone. Coarse graining over alternatives to the
future of �s, including all quantum branching, is immedi-
ate. Probabilities for alternatives on �s are then related
directly to the wave function on �s.

There remains the coarse graining over alternatives on
�s in Hubble volumes outside our own. This can be dis-
cussed explicitly in the saddle point approximation (1). The
cosmic no-hair results imply that a given saddle point yields
the same predictions for local observables for all Hubble
volumes on �s. Further, all saddle points starting at suffi-
ciently high potential in a particular inflationary direction
in field space yield identical predictions. This is the case,
for instance, in single-field models of eternal inflation with
a sufficient number of e-folds after the exit from eternal
inflation. We call regions in the landscape where saddle
points produce Hubble volumes with the same distributions
forO eternally inflating channels. Probabilities for observ-
ables O depend only on the channel, and we can coarse
grain over different eternally inflating histories in any one
channel. Labeling the different channels by K we arrive at

pðOjD�1Þ � X

K

pðOjKÞpðKÞ: (4)

Here, pðKÞ is the NBWF probability of channel K, and
pðOjKÞ is the probability for observables O given that
channel. In this approximation the TD probabilities
pðOjD�1Þ are independent of the details of the data D.

This is a finite and manageable prescription for probabil-
ities for observation in our Hubble volume. The two prob-
abilities involved in (4) can be estimated as follows.
Local observables O such as those associated with the

CMB refer only to short-wavelength fluctuations that can
be observed in our Hubble volume. This means long-
wavelength fluctuations should be coarse grained over to
compute joint probability pðO; KÞ. To leading order in @, if
one coarse grains over all possible values of the long-
wavelength fluctuations this sum over histories yields
one. The probabilities pðO; KÞ can then be estimated by
using saddle points in channel K that are nearly homoge-
neous everywhere and retain only the small, short-
wavelength, observable, fluctuations. Those saddle points
can be labeled by �K0 � �ei

K, where �ei
K is the threshold

value that marks the onset of the regime of eternal inflation
in channel K, and by the values of the short-wavelength
perturbations �K0 at the SP. Since the BU probabilities
decrease rapidly with �0 [cf. (2)], we can approximate
pðKÞ by exp½��=ð4Vei

K Þ�, where Vei
K � Vð�ei

KÞ is the value
of the local potential in channel K at the lowest exit from
eternal inflation. The conditional probabilities pðOjKÞ can
be calculated using standard perturbation theory tech-
niques (see, e.g., [6]).
Hence, with these approximations we predict that the

contributions from different channels in the landscape to
the TD probabilities (4) of observables O in our Hubble
volume are approximately given by the homogeneous
saddle points with the lowest exits from eternal inflation
in each channel. If the landscape has one particular channel
where the threshold of eternal inflation is at significantly
lower potential than in all others, then this channel pro-
vides the dominant contribution to the sum in (4).
Predictions for observations. Models of inflation.—

So far we have concentrated on explaining how predictions
for observations can be derived from a quantum state of
the Universe in a landscape that allows for different regions
of eternal inflation. However, one cannot expect this gen-
eral discussion to yield realistic predictions without further
qualification. In particular we have not discussed possible
structure on the landscape, nor optimized the class of data
D assumed for TD probabilities.
Therefore, to illustrate the framework above we now

consider a model landscape where the NBWF selects
a discrete set of K minima that are separated from each
other by steep potential barriers. We further assume that
each minimum in the class under discussion has a single
inflationary direction �K in field space, where the local
potential Vð�KÞ ¼ �K�

nK
K with nK � 2, and that other-

wise the minima are similar. For simplicity we assume the
value of �K agrees with the Cosmic Background Explorer
(COBE) amplitude. The threshold values �ei

K that mark the
onset of the regime of eternal inflation around the different
minima can be calculated from the condition that V3 ¼ V2

;�

at �ei
K. Substituting the NBWF probabilities [cf. (2)] with

�0 ¼ �ei
K in (4) yields for the TD probabilities
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pðOjD�1Þ � X

K

pðOj�ei
KÞ expð1=�KÞ2=ð2þnKÞ: (5)

Hence, with the assumed �K, the dominant contribution
comes from minima where the scalar field is moving in a
quadratic potential, for which pð�ei

KÞ � expð1=mÞ where
m ¼ ffiffiffiffi

�
p

. Then we predict that the observed CMB tem-

perature anisotropies will be those of an inflationary model
with a quadratic potential. Specifically, in this model
landscape, we predict an essentially Gaussian spec-
trum of microwave fluctuations with a scalar spectral index
ns � 0:97 and a tensor to scalar ratio of about 10%
(e.g., [11]).

Contributions from different saddle points.—The NBWF
predicts probabilities pðCobs

‘ jKÞ for the standard multi-

pole coefficients of the observed CMB two point correlator
in any class of backgrounds K [6]. The BU NBWF prob-
abilities for fluctuations are Gaussian to lowest order in
their amplitude. The resulting probabilities p‘ðCobs

‘ jKÞ for
a given ‘ are therefore essentially a �2 distribution speci-
fied by a mean hCobs

‘ i ¼ CK
‘ and (cosmic) variance �K

‘ �
2ðCK

‘ Þ2=ð2‘þ 1Þ where the CK
‘ are the theoretical multi-

pole coefficients that completely characterize Gaussian
fluctuations.

If the CK
‘ differ significantly we would expect all Cobs

‘ ’s

to be within a few �’s of one or the other predicted
expected values CK

‘ . If some Cobs
‘ ’s have been measured,

they can be used to make predictions about Ctbo
‘ ’s to be

observed by computing the conditional probability
pðCtbo

‘ jCobs
‘ Þ. Since the Cobs

‘ ’s are independent random

variables, these turn out to be given by

pðCtbo
‘ jCobs

‘ Þ ¼ X

K

pðCtbo
‘ jKÞpðKjCobs

‘ Þ; (6)

where, using the Bayes relation,

pðKjCobs
‘ Þ ¼ pðCobs

‘ jKÞpðKÞ
P
K
pðCobs

‘ jKÞpðKÞ ; (7)

and pðKÞ is the NBWF probability for channel K. If either
the no-boundary probabilities pðKÞ or the Cobs

‘ ’s are

enough to make pðKjCobs
‘ Þ peaked around one K, then

(6) predicts that further observations will confirm that.
Finally we note that, even though the TD probabilities

(4) for the linear fluctuations are a sum of Gaussian dis-
tributions from different channels, no non-Gaussianity is
predicted for the standard measures of it as discussed
in (6).

Conclusion. As a quantum mechanical system, the
Universe has a quantum state. A theory of that state such
as the NBWF is a necessary part of any final theory. The
probabilities following from the state are a measure for
prediction in cosmology. Applied to predictions of our
local observations, the NBWF measure appears to be finite
without the need for further ad hoc regularization. We
briefly summarize the essential principles behind this.

The state predicts probabilities for different configura-
tions of geometry and field on a spacelike surface. Our
observations of the Universe are limited to one particular
Hubble volume in a much larger universe. Their probabil-
ities are defined by summing (coarse graining) over unob-
served features, for example, the location of our past light
cone in spacetime, or structure arising from quantum
events far outside our past light cone. The saddle point
approximation to the wave function incorporates some of
this coarse graining. The resulting probabilities for obser-
vation are well defined and depend only on alternatives in
our past light cone.
Applying the no-boundary measure to a model land-

scape we found the dominant contribution to top-down
probabilities comes from the region(s) in field space where
the threshold for eternal inflation holds at the lowest value
of the potential. In the particular model consisting of
isolated minima with polynomial, monotonically increas-
ing directions of inflation, this implies an essentially
Gaussian spectrum of microwave fluctuations with a scalar
spectral index ns � 0:97 and a tensor to scalar ratio of
about 10%.
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